
Proof writing strategies.

A formal proof of a sentence β is a sequence of sentences α1, α2, . . . , αn where (i) β = αn

and (ii) each αi is deducible from earlier sentences via an accepted rule of deduction. A
disproof of β is a proof of ¬β.

An informal proof of β is an explanation of why β is true that contains all of the essential
details of a formal proof, but which is more understandable to humans. This note contains
terminology and hints about writing informal proofs.

Theorems. A statement β that has a proof is called a Theorem. Theorems sometimes
go by other names, such as Proposition, Lemma, Corollary. From a mathematical
perspective, these all mean “theorem”, but from a human perspective they communicate
a little bit more. It has been said that “a theorem is a proposition you are proud of!” A
lemma is (usually) a theorem proved as a step toward proving a more substantial theorem.
A corollary is a theorem that is an immediate consequence of a substantial theorem.

The Deduction Theorem. Most theorems have the structure “Theorem. H → C”
(hypotheses imply conclusions).1 Since |= (H → C) is equivalent to H |= C, proof systems
are constructed so that ` (H → C) is equivalent to H ` C. The statement that, for a given
proof system, ` (H → C) is equivalent to H ` C is called The Deduction Theorem for that
proof system. It reduces a proof α1, . . . , (H → C) of the theorem H → C to a deduction
H, . . . , C of C from H.

Direct versus indirect proof.
(H → C), ((¬C)→ (¬H)), and ((H ∧ (¬C))→ False) are all equivalent as propositions.

Coupled with The Deduction Theorem this suggests some basic strategies for proving H →
C.

(1) Direct proof: H, . . . , C.
(2) Proof of the contrapositive: (¬C), . . . , (¬H).
(3) Proof by contradiction: H, (¬C), . . . ,False.

Theorems with multiple hypotheses or conclusions can be approached with more complex
strategies. For example, a statement ((H1∧H2)→ C) with two hypotheses could be proved
by the mixed strategy H1, (¬C), . . . , (¬H2).

If and only if. A theorem statement of the form “P iff Q” means “(If P , then Q) and
(if Q, then P )”. Two proofs are required, one for P → Q and one for Q → P . These are
sometimes written as follows:

1Sometimes the hypotheses are not explicitly stated, so the theorem reads “Theorem. C” (some conclusion
is true). Here the unwritten hypotheses are: anything about the subject that has already been established!
For example, the unwritten hypotheses of “Theorem. There are infinitely many primes” are: any statements
about arithmetic that have already been established. These types of theorems are best proved indirectly.
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Theorem. P iff Q.

Proof.
[P → Q] P, . . . , Q.

[Q→ P ] Q, . . . , P . 2

A slightly different way to write the proof is:

Proof.
[⇒] P, . . . , Q.

[⇐] Q, . . . , P . 2

A more elaborate version of “iff” is a statement of the form “P iff Q iff R”. This might
be written:

Theorem. The following are equivalent. (Or just “TFAE”.)

(1) P
(2) Q
(3) R

Proof.
[(1)⇒(2)] P, . . . , Q.

[(2)⇒(3)] Q, . . . , R.

[(3)⇒(1)] R, . . . , P . 2

(Note: such cycles can be longer.)

Case division. Suppose we want to prove H → C via a deduction that starts with H
and ends with C. Suppose your proof has reached a stage that looks like H, . . . , P ∨ Q.
(I.e., H proves that either P or Q holds.) If you also have proofs P, . . . , C and Q, . . . , C,
then it is possible to combine these proof fragments (i) H, . . . , P ∨Q, (ii) P, . . . , C and (iii)
Q, . . . , C into a proof that H implies C.

Formally, the reason this is possible is that the proposition (P → C) ∧ (Q → C) is
logically equivalent to ((P ∨ Q) → C), so by introducing the proper tautologies and using
The Deduction Theorem we can arrange fragments (ii) and (iii) into a proof P ∨Q, . . . , C.
This can be appended to the proof fragment (i) to obtain a proof H, . . . , P ∨Q, . . . , C.

Informally, the strategy we use is to argue by cases. If you can prove from H that P or
Q must be true, then you write the deduction H, . . . , (P ∨Q) and follow it with

Case 1. P holds.
In this case, P, . . . , C.

Case 2. Q holds.
In this case, Q, . . . , C.

Since we reach the conclusion in either case, we are done. 2

(Note: there can be more than two cases.)
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Quantifiers. Suppose you are writing a proof H, . . . , ∃xP (x), . . . , Q, . . . , R where at
sentence Q you need to make use of the fact, established earlier, that there is some element
that satisfies P (x). Suppose that further on, at sentence R, you also need to make use of
the fact that some element satisfies P (x). Moreover, suppose that you need the element
referred to at sentence R to be the same element referred to at sentence Q. What do you
do?

Formally, there is a nontrivial, but mechanical trick to handle this situation. Informally,
we handle this in an obvious way: At sentence ∃xP (x) we introduce a name (like a) for an
element that satisfies P (x). Then at later stages we refer to the name a when we need to
refer to the element.

To prove that ∀xP (x) holds we may introduce a new symbol, say y, and prove that
P (y) holds when y is arbitrary. For example, the statement that sets A ∩ (B ∪ C) and
(A ∩B) ∪ (A ∩ C) are equal is a universally quantified statement:

∀x((x ∈ (A ∩ (B ∪ C)))↔ (x ∈ ((A ∩B) ∪ (A ∩ C))))

To prove it we may select an arbitrary y and show that

y ∈ (A ∩ (B ∪ C))↔ y ∈ ((A ∩B) ∪ (A ∩ C)).

(Establishing that this holds requires two proofs: y ∈ (A∩(B∪C))→ y ∈ ((A∩B)∪(A∩C))
and y ∈ ((A ∩B) ∪ (A ∩ C))→ y ∈ (A ∩ (B ∪ C)).)

Examples and counterexamples. To prove an existential sentence ∃xC(x) it is enough
to give an example. That is, exhibiting an element x = a for which C(a) holds suffices to
prove that ∃xC(x) is true. On the other hand, to prove a universal sentence ∀xC(x) it is
not enough to give an example.

To disprove a universal sentence ∀xC(x) you must show that its negation is true. Since
the negation is equivalent to the existential sentence ∃x(¬C(x)), it is enough to give an
example to establish the falsity of ∀xC(x). That is, to disprove ∀xC(x) it is enough to
exhibit some a such that ¬C(a) holds or, equivalently, such that C(a) fails. Examples used
to disprove universal sentences are called counterexamples. (If C(x) = “if x is odd, then
x is prime”, then ∀xC(x) is false. You can disprove it by exhibiting the counterexample
x = 9.)

What to do when you don’t know what to do. There is no algorithm to discover
the proof of a statement, but there is always something you can do when you are stuck.
Here are three suggestions:

(1) Draw a picture.
(2) Write out the definitions.
(3) Work from both ends.
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Exercises.

1. Consider the following statement about the real numbers: If 0 < x < 1, then x2 < x.
Give a direct proof, proof of the contrapositive, and a proof by contradiction.

Solution to Exercise 1.

Direct proof. Choose x arbitrarily so that the hypothesis holds, i.e., so that 0 < x < 1.
Then x is positive and x < 1. We can multiply an inequality, like x < 1, by the positive
value x and maintain the inequality. Hence x · x < x · 1, or x2 < x, as desired.

Proof of the contrapositive. Choose x arbitrarily so that the conclusion fails, i.e., so that
x2 6< x. Then x ≤ x2, so 0 ≤ x2−x. Upon factoring we find that 0 ≤ x(x− 1). This implies
that x and x − 1 have the same sign (although one could be zero). Since x − 1 < x, this
implies that either 0 ≤ x− 1 or x ≤ 0.

Case 1. 0 ≤ x− 1.

In this case, 1 ≤ x, so the hypothesis 0 < x < 1 fails.

Case 2. x ≤ 0.

Again the hypothesis 0 < x < 1 fails.

Cases 1 and 2 exhaust all cases, so we are done.

Proof by contradiction. Choose x arbitrarily so that 0 < x < 1 and x2 6< x. As in the
proof by contradiction, the second assumption leads to 0 ≤ x(x− 1). The first assumption
yields that x is positive and (x − 1) is negative, so 0 ≤ x(x − 1) = (positive)(negative) =
negative < 0. This yields 0 < 0, a contradiction.

Write proofs of the following statements, and then identify any of the proof writing strate-
gies from this document that you used.

2. A ⊆ B is equivalent to both A ∩B = A and A ∪B = B.

3. If f and g are real functions such that f is bounded above and g is bounded below,
then f − g is bounded above.

4. If f is a positive increasing function, then f 2 is also a positive increasing function.


