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Types

The type of an element is the set of all things that can be said about that
element. The type of a tuple is the set of all things that can be said about it.

If a = (a1, . . . , an) ∈ An and x = (x1, . . . , xn), then

tpAn (a) = tpA(a) = tp(a) = {ϕ(x) | A |= ϕ[a]}

Example. Let A be the L-structure 〈ω;<〉. Let Σ be the set of
(LA ∪ {c})-sentences equal to the union of Th(AA) and a set of sentences
expressing that (i) c is not the smallest element, (ii) c is not the second
smallest element, (iii) ETC. Σ is finitely satisfiable, so it has a model B that
properly extends A containing an element c that is “infinitely large”.
B |= Th(A), so B ≡ A, yet the structures can be distinguished by the fact that
B has an element of type tp(c) and A does not.
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Abstract types

Definition. A partial n-type of a theory T is a set Σ(x) of formulas in the
fixed string of variables x = (x1, . . . , xn) such that there is a model A of T and
a tuple a ∈ An such that A |= ϕ[a] for each ϕ(x) ∈ Σ(x). (Σ(x) ⊆ tpA(a).)
A complete n-type is a maximal partial n-type. (Σ(x) = tpA(a).)
A (p/c) n-type of A is defined to be a (p/c) n-type of Th(A).
An n-type is realized in A if it is the type of some n-tuple of A, else omitted.

Comments.
1 If you replace x with a string c of new constant symbols, then new

concepts correspond to old : ‘partial type Σ(x)’ corresponds to
‘satisfiable Σ(c)’; ‘complete type’ corresponds to ‘complete theory’;
‘Σ(x) is realized in A by a’ corresponds to ‘Aa is a model of Σ(c)’.

2 “A realizes Σ(x)” is the assertion that A satisfies the L∞,ω-sentence

(∃x)

 ∧
ϕ(x)∈Σ(x)

ϕ(x)

 .
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Spaces of types

Since complete types of L in the variables x correspond to complete
L ∪ {c}-theories, we can import everything we learned about spaces of
complete theories to speak about spaces of complete types. We get a sequence
of Stone spaces connected by continuous “projection maps”, or “restriction
maps”:

Spec(L)← Spec(L(x1)) ⇔ Spec(L(x1, x2))←←← · · ·

(The first projection map of Spec(L(x1, x2)) to Spec(L(x1)) takes a complete
2-type Σ(x1, x2) and restricts it to the subset Σ(x1, x2)|x1 of those formulas
where x2 does not appear. Σ(x1, x2)|x1 will be a complete type.)

If T is a theory, then Sn(T) is the closed subset of Spec(L(x1, . . . , xn))
consisting of n-types of T . Again, we have continuous restrictions:

S0(T)← S1(T) ⇔ S2(T)←←← · · ·
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Recognizing a partial type

Thm. Let Σ(x) be a set of L-formulas in x. TFAE:
1 Σ(x) is a partial type of T .
2 T ∪ Σ(c) is a satisfiable set of (L ∪ {c})-sentences
3 There exists a model A of T such that for any finite subset
{ϕ1(x), . . . , ϕn(x)} ⊆ Σ(x), A |= (∃x)(

∧
ϕi(x)).

Examples. The set consisting of all formulas ϕn(x) : (0 < x < 1/n) is a
partial 1-type for the theory T of ordered fields. This partial 1-type is realized
in an ordered field if the field has a positive infinitesimal, else it is omitted.

There is an n-type Σ(v1, . . . , vn) in the language of F-vector spaces whose
realizations in a model are the F-linearly independent sequences of length n.

There is an 1-type Σ(t) in the language of fields whose realizations in a model
are the transcendental numbers. (I.e., numbers transcendental over the prime
subfield.)
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Elementary embedding/substructure/extension

An elementary map j : A→ B is a type-preserving function. This means
that for every a ∈ An we have tpA(a) = tpB(j(a)). Equivalently, for every
a ∈ An we have A |= ϕ[a] iff B |= ϕ[j(a)].

Most functions are not elementary maps. It is hard to find elementary maps,
and hard to establish that a map is elementary. It is usually easy to show that a
map is not elementary.

The inclusion 〈N; +〉 ↪→ 〈Z; +〉 is not elementary. (N 6≡ Z)
The map s : 〈ω;∈〉 → 〈ω;∈〉 : n 7→ n + 1 is not elementary.
(tp(0) 6= tp(s(0)))
Any isomorphism is an elementary map.
The diagonal embedding into an ultrapower is an elementary map.

Any elementary map must be injective, in fact an embedding. If the inclusion
map A→ B is elementary, we say that A is an elementary substructure of B
(A ≺ B) and that B is an elementary extension of A (B � A). In this
language, j : A→ B is elementary iff j is an embedding and im(j) ≺ B.
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When is A ≺ B?

The Tarski-Vaught Test. Assume that A is a substructure of B. TFAE:
1 A ≺ B
2 Any formula with parameters in A that has a solution in B already has a

solution in A. (For every ϕ(a, y), if B |= (∃y)ϕ(a, y), then
A |= (∃y)ϕ(a, y).)

[(1)⇒(2)] (∃y)ϕ(x, y) ∈ tpB(a) iff (∃y)ϕ(x, y) ∈ tpA(a).

[(2)⇒(1)] (Induction: atomic formulas, ∧,¬,∃) For any embedding
e : A→ B, satisfaction of atomic formulas is preserved and reflected:

A |= ϕ[a]⇔ B |= ϕ[e(a)].

This bi-implication is preserved by ∧,¬, so satisfaction of quantifier-free
(q.f.) formulas is preserved and reflected. Even more, satisfaction of
Σ1-formulas (∃(q.f.), or ∃(

∨∧
±atomic)) are preserved. Item (2) of the

theorem asserts that satisfaction of Σ1-formulas are reflected. That’s enough.
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Exercises

1 What are the elementary submodels of 〈ω;<〉?

2 If F ≺ K is a field extension that is elementary, show that any element of
K that is algebraic over F lies in F.

3 Is the field extension R ≤ R(t) elementary?

4 Show that if A,B ≺ C, and A ⊆ B, then A ≺ B.

5 Give an example where A,B ≺ C, but A ∩ B 6≺ C. (Hint: Let C be an
infinite “pure set”, i.e. structure in the language of equality. Then a
substructure of C is elementary iff it is infinite.)
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Downward Lowenheim-Skolem

Thm. Let B be an L-structure and X ⊆ B a subset. For any κ satisfying
|X|+ ‖L‖ ≤ κ ≤ |B| there is an elementary substructure A ≺ B containing X
which has size κ.

Proof. By enlarging X if necessary, we may assume that |X| = κ. Now define
a sequence

X = X0 ⊆ A0 ⊆ X1 ⊆ A1 · · ·

where Ai+1 is the substructure of B generated by Xi, and Xi+1 is obtained
from Ai by adjoining solutions (relative to Ai) as needed in the Tarski-Vaught
Theorem. Then

⋃
Ai =

⋃
Xi is a submodel of B since the left hand side is,

while this union has the necessary solutions since the right hand side does.
Let A =

⋃
Ai.

We have κ ≤ |Xi+1| ≤ |Ai|+ ‖L‖ ≤ |Ai|+ κ and
κ ≤ |Ai+1| ≤ |Xi|+ ‖L‖ ≤ |Xi|+ κ. Hence

κ = |X0| ≤ |A| ≤ |X0|+ κω = κ.2
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