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A general interpolation theorem

A basic “interpolation theorem” compares the strength of theories in different
languages. It is usually proved by a refinement of the idea used for the
Completeness Theorem and for the Omitting Types Theorem.

Basic Interpolation Theorem. Let T1 be an L1-theory and T2 be an
L2-theory. If T1 ∪ T2 is inconsistent, then there is a sentence θ in L1 ∩ L2 that
separates them. That is,

T1 |= θ and T2 |= ¬θ.

(You can model a proof on the proof of a similar result in Chang-Keisler, 2nd
ed., pages 88-89.)
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William Craig

Craig Interpolation Theorem. If σ, τ are sentences and σ |= τ , then there
exists a sentence θ in the intersection language such that σ |= θ and θ |= τ .

Proof sketch. Let T1 = {σ} and T2 = {¬τ}.
Since σ |= τ , we get T1 ∪ T2 = {σ,¬τ} |= τ ∧ ¬τ .
Hence T1 ∪ T2 is inconsistent.
By the Basic Interpolation Theorem, there must be θ in the intersection
language such that σ |= θ and ¬τ |= ¬θ.
The latter may be rewritten θ |= τ . 2

Example.
1 σ = (∃x)(P(x) ∧ ¬P(x)).
2 τ = (∀y)(Q(y) ∨ ¬Q(y)).
3 θ = (∃y)(y = y).
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Abraham Robinson

Robinson Joint Consistency Theorem. Let T1 be a consistent L1-theory and
T2 be a consistent L2-theory. If T1 ∩ T2 is a complete L1 ∩ L2-theory, then
T1 ∪ T2 is consistent.

Proof sketch. If T1 ∪ T2 is inconsistent, then Basic Interpolation guarantees
that there exists an L1 ∩ L2-sentence θ such that T1 |= θ and T2 |= ¬θ.

Case 1. T1 ∩ T2 |= θ.
Then T2 |= θ ∧ ¬θ, contradicting the consistency of T2.

Case 2. T1 ∩ T2 |= ¬θ.
Then T1 |= θ ∧ ¬θ, contradicting the consistency of T1.

Since T1 ∩ T2 is complete, these are the only cases. 2
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Evert Beth

Beth Definability Theorem. A relation is implicitly definable iff it is
explicitly definable.

Example. Let T = Th(〈R; +,−, 0, ·, 1〉). Let < be a new relation symbol.
Implicitly define this relation by writing down the axioms of ordered fields.

1 < is a strict linear order.
2 (∀a)(∀b)(∀c)((a < b)→ (a + c < b + c)).
3 (∀a)(∀b)(∀c)(((a < b) ∧ (0 < c))→ (ac < bc)).

By the theorem this implicit definition is equivalent modulo T to an explicit
definition, e.g.

(∀a)(∀b)((a < b)↔ (∃z)((z 6= 0) ∧ (a + z2 = b))).
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Implicit versus explicit definitions.

Implicit definition = use it in a sentence (or many sentences), until its
meaning is uniquely determined.

Explicit definition = “dictionary definition”.

Example.
1 Colonel Mustard killed a Mammal in my Library with a Candlestick.

The warm blood and bits of broken spinal column destroyed my comic
book collection.

2 It is important for a Mammal to shave before a big job interview.
3 That Mammal was observed juggling three eggs, which obviously

couldn’t be his.
versus

1 A mammal is: a warm-blooded invertebrate that possesses hair or fur
that gives birth to live young.
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Mathematical formulation.

Let L be a language, let R and R′ be distinct n-relation symbols not in L.
Let Σ(R) be a set of L ∪ {R}-sentences, and let Σ(R′) be the same set with R
replaced by R′.

Σ(R) defines R implicitly modulo an L-theory T iff

T ∪ Σ(R) ∪ Σ(R′) |= (∀x)(R(x)↔ R′(x)).

This means: the interpretation of R in any model of T is uniquely determined
by Σ(R).

An L-formula ϕ(x) defines R explicitly modulo T if

T |= (∀x)(R(x)↔ ϕ(x)).
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