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Models realizing many types

Throughout these slides, T will be a complete theory in a countable language
which has infinite models.

By the Compactness Theorem, any model of T has an elementary extension
that realizes all types.

One expects such an extension to behave like a “completion” or
“compactification” of the original model.

Defn. Call a model S of T weakly saturated if it realizes all types in S, (T) for
all n.
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Models realizing many types

The definition of “weakly saturated model” seems dual to the definition of
atomic model, so in an ideal world, the following would be true:

@ Countable weakly saturated models of T would exist.

@ Any two would be isomorphic.

@ Any countable model of 7 would embed elementarily into the weakly
saturated model.

@ Two tuples in a weakly saturated model would have the same type iff
they differed by an automorphism.

But all of these statements are false.
The first statement becomes true provided |S,,(7)| < 2% for all n. And then
all statements become true with “w-saturated” in place of “weakly saturated”.
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The Ehrenfeucht theory

Example. Let T be the theory of dense linear order without endpoints
expanded by a strictly increasing w-chain of constants.

@ Signature involves <, ¢y, ¢, . . . only.
© Axioms for T =
(i) Axioms of dense linear orders without endpoints.
(i1) ¢; < cj41 for each i.
© Theory has g.e. and is complete by modhw3p3 (Eblen, Murali, Ornstein).

© (I(T,w) = 3.) Theory has three isomorphism types of countable models.
Any countable model is isomorphic to one of the form (Q; <, ¢, ¢y, . . .)
where
(i) (Model M) The sequence (c;);ec., is unbounded.
(ii) (Model M) The sequence (c;);c., has a least upper bound in the model.
(iii) (Model M) The sequence (c;);c., has an upper bound in the model but
has no least upper bound in the model.
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The countable models M, Ml,, M5
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Figure: Top(x) = {co < x, ¢1 <x, ¢ <x, ...}, nonisolated p € S;(7T)
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Observations

@ The fact that I(T,w) = 3 can be checked by noting that a countable
model is determined up to isomorphism by the part above all the
constants, and that part is a (possibly empty) dense linear order without
top element.

Q All embeddings between models are elementary by g.e.

M < M, < Mz < Mj.

@ I(T,w) < 2% implies S,(T) is scattered for all 1, so one of the models
must be atomic. The only plausible candidate is M.

Q All countable models embed elementarily into both M, and M. This is
enough to prove that M, and M5 are both weakly saturated.

© The model M, does not have the type-extension property.

Let p € S(T) be the type p(x;) = Top(x;). Let g € S>(T) be the type
q(x1,x2) = Top(x1) U Top(x2) U {x2 < x1}. g|1 = p. Leta = lub(c;).
The 1-tuple (a) realizes p, Some 1-tuples that realize p can be extended
to 2-tuples that realize g. But the 1-tuple (a) cannot be extended to a
2-tuple that realizes q.

Saturated models 6/19



Tweaking the example by coloring the points

We introduce two new unary relations, red(x) and blue(x). Our goal is to
construct a theory like Ehrenfeucht’s, but with every point colored either red

or blue, but not both colors.
@ Signature involves <, red(x), blue(x), co, ¢, . . . only.

Q Axioms for T =
(i) Axioms of linear orders without endpoints.
(i) An axiom saying that each point has a unique color:

(Vx)((red(x) A —blue(x)) V (—red(x) A blue(x))).
(iii) Both red points and blue points are dense:
(Vw)(Vx)((w < x) — (3y)(Fz)(red(y) Ablue(z) A (w <y <x) A (w<z<x))).

(iv) ¢; < ci41 for eachi.
(v) red(c;) for each i.
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This theory has four countable models
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Figure: Ny < N, < N3 <Ny < N,
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More observations about the uncolored version

@ M), (the model where lub(c;) exists in the model) does not have the
type-extension property. The problem involves the bound a = lub(c;).

Q Ifa=1lub(c;),thenp = {c;i<x<a|i€cw}isal-typeinL({a}),
which is not realized in (M),. Thus, M, is weakly saturated, while an
expansion by a single constant is no longer weakly saturated.

@ All upper bounds of the sequence (c;);e,, have the same 1-type over the
empty set (namely Top(x)). But a = lub(c;) does not differ from other
realizations of Top(x) by an automorphism.

@ On the other hand, M3 does have the type-extension property, any
expansion of M3 by finitely many constants is again weakly saturated,

and any two tuples of the same type in M3 differ by an automorphism.
M5 is w-saturated.
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Let A and B be countable structures both enumerated by w:

A =Hap,a1,a2,...}

B = {bo,b1,bs,...}

The assignment a; — b; is an isomorphism iff it is type-preserving:

tp(a()"-a,,_l) :tp(b()”-bn_l) (D)

for all n.

Suppose we want to build an isomorphism one element at a time, by ensuring
that, given equality of types of length-# initial segments a, b, as in (1), and
given the choice for a,, we can find a corresponding choice for b,,. If we work
only with types over the empty set, then we need some form of the
type-extension lemma. It is enough to assume A and B are weakly saturated
PLUS any two tuples of the same type differ by an automorphism. OR, we
can work with A, and B}, and then deal only with types in the expanded
language L(a).

Saturated models 10/19



w-saturation

Defn. Let T be a complete theory.

Q@ A model M of T is w-saturated if, whenever a € M", M, realizes every
type in S;(a). Often written “whenever A C M, |A| < w, M, realizes
every type in Sy (A)”. !

Q (Type extension) A model M of T is w-homogeneous if, whenever
a,b e M", tp(a) = tp(b), and ¢ € M, then there exists d € M such that
tp(ac) = tp(bd).

© A model M of T is strongly w-homogeneous if, whenever a,b € M",
tp(a) = tp(b), then there is an automorphism « of M such that «(a) = b.

© A model M of T is w™-universal every countable model of T is
elementarily embeddable in M. (In particular, an w™ -universal model
will be weakly saturated.)

"Equivalently, M, realizes every type in S, (A) for each finite n, Proposition 4.3.2, Marker.
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Relationships

Theorem. Let T be a complete theory in a countable language. TFAE about a
countable model M of 7.

@ M is w-saturated.

@ M is weakly saturated and w-homogeneous. (M realizes all types over
the empty set and has the type extension property.)

© M is weakly saturated and strongly w-homogeneous.
© M is wT-universal and w-homogeneous.

© M is wT-universal and strongly w-homogeneous.

Trivial implications.
w™ -universality implies weak saturation.
Strong w-homogeneity implies w-homogeneity.

Not-too-hard implications.
w-saturation implies strong w-homogeneity. (Back and forth.)
w-saturation implies w ™ -universality. (Forth.)
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Weak saturation and w-homogeneity in E’s Theory
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Figure: M, M3 weakly saturated; M, M3 w-homogeneous
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A proof sketch

Theorem. Two countable w-saturated models of 7" are isomorphic. (Back and
forth.)

Assume A and B are w-saturated models of 7.

Enumerate them.

Start back and forth: Assume that f : a — b is a partial isomorphism that we
want to extend. At this point, tp®(a) = tp®(b). Equivalently, A = o(a) iff
B = ¢(b). Equivalently, A, = By,.

Assume it is our turn to extend the domain. Let ¢ € A be the least
unconsidered element. Let p = tp®a(c). Let d be a realization of p in By,
Thus, A |= 6(ac) iff B |= 0(bd). Le., tp”(ac) = tp®(bd). Extend f so that
flc)=d. O

When A = B, this argument proves strong w-homogeneity of w-saturated
models. Half of the argument proves w™ -universality.

Saturated models 14/19



Existence and uniqueness

Theorem. Let T be a complete theory in a countable language. If A and B are
countable w-saturated models of T, then A = B.

Theorem. Let T be a complete theory in a countable language. TFAE.
@ T has a countable w-saturated model.
@ T has a countable weakly saturated model.
@ Tis “small”. (|S,(T)| < 2™ for all n.)

Part of proof.

(1) = (2) = (3) uses only ideas we have seen.

(3) implies that, for any model M of 7, and any finite subset A C M,

(1] = m, say), then [SE(A)] < [Sin(T)]| < w.

Idea for the rest. Let My = M. Find a countable elementary extension

M4 > M; that realizes the countable set of 1-types over finite subsets of M.
Let M be the union of the M;. O
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Extensions to higher cardinalities

Defn. A model M of T is k-saturated if whenever A C M satisfies |A| < &,
then M, realizes all p € SY(A). We say that M is saturated if it is
|M|-saturated.

To discuss this when x # w, we need a concept of type for infinitely long
tuples.

Some basic results.
@ k-saturated = £ -universal and x-homogeneous.
© Formation of ultrapowers increases saturation.

@ An infinite model M satisfying [M| < 2% has a " -saturated elementary
extension of cardinality 2°.

© There is a model X of ZFC, a theory T, and a model M of T such that M
has no saturated elementary extension in X.
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Saturated models of ACF,

Theorem. A model K of ACF,, is saturated if(f) it contains an algebraically
independent subset of size |K]|.

Proof sketch. Let’s explain why C is saturated.

Let A C C satisfy |A| < |C|.

Let F be an algebraically closed subfield of C containing A and satisfying

IF| < |C|.

By g.e., types over A are determined by F-atomic part.

Any type over A with a “+atomic” part (p(x,a) = 0) is realized in IF, hence in
C.

Any complete type over A with only “—atomic” describes an element
transcendental over [F. C has such an element. 0.
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Appendix: Ultrapowers are somewhat saturated

Let A be a structure and B C A be a subset. Let k = ||L(B)||. Let I = Pgin(k)
be the set of finite subsets of .

I = Pjin(k) is directed by inclusion. The tail ends of this directed set form a
proper filter on /, which can be extended to an ultrafilter ¢/ on /. Let’s outline
why [T, A realizes every type in S(B).

Accept for now that every p € S7(B) has cardinality x = ||L(B)||, and choose
a bijection 3, : £ — p. There is an induced bijection from I = Py, (k) to
Prin(p), which we also call 3,. Thus, for each i € I, there is assigned a set

By (i), which is a finite subset of p.

Since p is consistent with Th(Ap), for each i there is an element a; € A that
satisfies all formulas in the finite set 3,(i). Leta € Al be the tuple satisfying
(a); = a; for all i. For each ¢(x) € p we have that [[a]] contains the tail end
in I = Ppn(r) generated by 3, (¢(x)). This tail end belongs to U, hence
[I; A = [a]. This is true for any ¢(x) € p, so arealizes pin [, A.
Similarly, every g € Sf(B) is realized in the same ultrapower. It is worth
recording that | [T, A| = |A[IE®,
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Appendix to the appendix

On the previous slide it was claimed that all types in SII* (B) have the same
cardinality, namely « = ||L(B)||. This fact was used so that we could
correspond finite subsets of any p € S{* (B) to finite subsets of the fixed set &.
This was needed so that a fixed ultrapower was able to realize all types in
S#(B) simultaneously.

One can prove that all types in S4*(B) have size x = ||L(B)|| as follows.

O Ifp € S(B), thenp C L(B), so |p| < ||IL(B)|| = &.

@ The existence of the map ¢ (x) — (Vx1) - - - (Vxx)(X), which assigns to a
formula its universal closure, is a finite-to-one map from L(B) to a subset
of the L(B)-sentences. This establishes that the set of L(B)-sentences has
size at least . (I am basing this claim on the fact that if X and Y are
infinite and there is a finite-to-one map from X into Y, then |X| < |Y].)

@ Any p € S¥(B) contains half of the L(B)-sentences, hence p has
cardinality at least %Iﬁ = K.
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