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Nature decides truth

The relation |= defines a Galois connection between L-structures and
L-sentences.
We write ¥ |= o to indicate that o lies in the Galois closure of 3.

(ie. 0 € ).
How can we characterize the Galois closure of X “internally”? (meaning:
how can you determine whether o € ¥ without referring to structures?)
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Humans decide provability

We create a machine called “proof”, where ¢ is provable from > (X F o)
iff o is a semantic consequence of ¥ (X |= o).

If our only goal is to characterize Galois closure internally, then we only
demand that our proof calculus be

e Sound (X F oimplies¥ o), and
e Complete (X = o implies X - o).
But, since we are humans, we shall also demand that

@ proofs should be recognizable as proofs.

Df. > - 0 means there is a finite sequence of formulas
x1,2,...,0p =0

where each «; is an axiom, a member of X2, or is derivable from earlier terms
in the sequence using a rule of inference.
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What is needed?

We should choose axioms so that they are recognizable instances of = «.

A1y O

We should choose rules of inference, typically written g, S0 that they
are recognizable instances of {a, ..., an,} E B.

“Should” means: if we do this, then soundness will hold.

Axioms.
o All tautologies.
9 = is an equivalence relation on terms.
o Can substitute equals for equals without changing meaning.
Q (Wxi(a = B) = (Vxia — VxB)
Q (a — Vx;a) if x; does not appear in formula o
o (3x;(x; = 1) if x; does not occur in term 7.
Rules.
o (Modus Ponens) %ﬁﬁ

Q (Generalization) ﬁ
i
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Stage 1: the Deduction Theorem

Observe that ¥ = o iff XU {—c} = L. (Note: YA(A (£~ 1). Le., L is not
satisfiable.)

Therefore we want ¥ - o iff XU {—o} F L.
“More generally”, X U {a} = Siff X = (o — B).
Sowewant X U {a} F Siff X F (o — 3).
Reverse direction is direct and easy.

Forward direction is proved by induction on the length of a proof of
YU{a}Fp.

It is also easy.

[Idea: Replace every «; in a (X U {a})-proof of 5 with & — «; to obtain a
Y-proof of (o — 3).]

The second part is called:

Deduction Thm. If ¥ U {a} = 5, then £ = (o — ).
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Application

Our goal is to prove that ¥ |= o implies ¥ |- o.
Equivalently, if I" := ¥ U {—c} is not satisfiable (I" = L), then it is not
consistent (I' - 1).

Contrapositively, if I' is consistent, then it is satisfiable (i.e. has a model).
(This reformulation is worth remembering! )

Strategy to achieve our goal:
@ Show that a consistent theory I' can be enlarged to a “Henkin theory”.
@ Show that a Henkin theory has a model.
© Show that a model of an enlargement of I" is also a model of I'. (Duh!)
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Henkin theory

Df. A theory I' is a Henkin theory if it is
Q consistent,
@ complete, and
© has witnesses.

Meanings:

Q A theory is consistent if you can’t prove falsity from it.

©Q A consistent theory I' is complete if it decides every sentence:
For every o, either o € " or (o) € T".

@ A theory I" has witnesses if whenever ((x) is a formula with one free
variable, then ((3x)p(x) — ¢(c)) € T for some constant c.

Henkin’s key insight is that if A is a structure, then the theory of its
“expansion by constants”, I' = Th(A,), is a Henkin theory. Conversely every
Henkin theory arises in this way. Moreover, Th(A,4) explains clearly how to
construct its canonical model, Ay4.
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The enlargement steps

Lindenbaum’s Theorem. Every consistent L-theory can be enlarged to a
complete L-theory.

[Idea: if '/ o, then ' U {—c} I/ L, soI' U {—c} is a consistent enlargement
of I". Keep doing this until you arrive at a complete theory.]

Henkin’s Theorem. Every consistent theory can be enlarged to a consistent
theory with witnesses, provided we allow ourselves to enlarge the language to
include more constant symbols.

[Idea: suppose I' U {(Ix)p(x) — ¢(c)} = L where ¢ ¢ L. Then
I'F=((3x)e(x) = ¢(c)), or I' = (Ix)p(x) A =p(c). Need quantifier axioms
and rules which permit this deduction:

(Fx)p(x) A =p(e), (V) ((Fx)p(x) A = (x)), (Fx)p(x) A =(F)p(x)), L.

Thus I' - L. Now repeat the idea of Lindenbaum’s Theorem with ¢ equal to
~(F)e(x) = ¢(c)) ]
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Finally: Henkin theories have an obvious model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)
Let C be the set of constants in L. It will be the domain of an L-structure.
If ¢ € L, then define ¢© = ¢ € C.

If R(xq,...,x,) is a predicate symbol, declare that R®(c, ..., c,) is true if
R(ci,...,cn) € H.
If F(x1,...,x,) is a function symbol, declare that F(cy, ..., c,) = d is true

if (F(cy,...,cp) =d) € H.
Define an equivalence relation # on C by ¢ = d (mod 0) if (¢ =d) € H.

It will be the case that C/6 = H. In fact, H = Th(C/6). C/6 is called the
Henkin model of H.
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