
The Completeness Theorem

Σ |= σ iff Σ ` σ
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Nature decides truth

The relation |= defines a Galois connection between L-structures and
L-sentences.

We write Σ |= σ to indicate that σ lies in the Galois closure of Σ.
(i.e. σ ∈ Σ⊥⊥).

How can we characterize the Galois closure of Σ “internally”? (meaning:
how can you determine whether σ ∈ Σ⊥⊥ without referring to structures?)
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Humans decide provability

We create a machine called “proof”, where σ is provable from Σ (Σ ` σ)
iff σ is a semantic consequence of Σ (Σ |= σ).

If our only goal is to characterize Galois closure internally, then we only
demand that our proof calculus be

Sound (Σ ` σ implies Σ |= σ), and

Complete (Σ |= σ implies Σ ` σ).

But, since we are humans, we shall also demand that

proofs should be recognizable as proofs.

Df. Σ ` σ means there is a finite sequence of formulas

α1, α2, . . . , αn = σ

where each αi is an axiom, a member of Σ, or is derivable from earlier terms
in the sequence using a rule of inference.
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What is needed?

We should choose axioms so that they are recognizable instances of |= α.

We should choose rules of inference, typically written α1,...,αm
β , so that they

are recognizable instances of {α1, . . . , αm} |= β.

“Should” means: if we do this, then soundness will hold.
Axioms.

1 All tautologies.

2 = is an equivalence relation on terms.

3 Can substitute equals for equals without changing meaning.

4 (∀xi(α → β)) → (∀xiα → ∀xiβ)

5 (α → ∀xiα) if xi does not appear in formula α.

6 (∃xi(xi = t) if xi does not occur in term t.

Rules.

1 (Modus Ponens) α,α→β
β

2 (Generalization) ϕ
(∀xi)ϕ
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Stage 1: the Deduction Theorem

Observe that Σ |= σ iff Σ ∪ {¬σ} |= ⊥. (Note: ∀A(A 6|= ⊥). I.e., ⊥ is not
satisfiable.)

Therefore we want Σ ` σ iff Σ ∪ {¬σ} ` ⊥.

“More generally”, Σ ∪ {α} |= β iff Σ |= (α→ β).

So we want Σ ∪ {α} ` β iff Σ ` (α→ β).

Reverse direction is direct and easy.

Forward direction is proved by induction on the length of a proof of
Σ ∪ {α} ` β.
It is also easy.
[Idea: Replace every αi in a (Σ ∪ {α})-proof of β with α→ αi to obtain a
Σ-proof of (α→ β).]

The second part is called:

Deduction Thm. If Σ ∪ {α} |= β, then Σ |= (α→ β).
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Application

Our goal is to prove that Σ |= σ implies Σ ` σ.

Equivalently, if Γ := Σ ∪ {¬σ} is not satisfiable (Γ |= ⊥), then it is not
consistent (Γ ` ⊥).

Contrapositively, if Γ is consistent, then it is satisfiable (i.e. has a model).
(This reformulation is worth remembering! )

Strategy to achieve our goal:
1 Show that a consistent theory Γ can be enlarged to a “Henkin theory”.
2 Show that a Henkin theory has a model.
3 Show that a model of an enlargement of Γ is also a model of Γ. (Duh!)
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Henkin theory

Df. A theory Γ is a Henkin theory if it is
1 consistent,
2 complete, and
3 has witnesses.

Meanings:

1 A theory is consistent if you can’t prove falsity from it.
2 A consistent theory Γ is complete if it decides every sentence:

For every σ, either σ ∈ Γ or (¬σ) ∈ Γ.
3 A theory Γ has witnesses if whenever ϕ(x) is a formula with one free

variable, then ((∃x)ϕ(x)→ ϕ(c)) ∈ Γ for some constant c.

Henkin’s key insight is that if A is a structure, then the theory of its
“expansion by constants”, Γ = Th(AA), is a Henkin theory. Conversely every
Henkin theory arises in this way. Moreover, Th(AA) explains clearly how to
construct its canonical model, AA.
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The enlargement steps

Lindenbaum’s Theorem. Every consistent L-theory can be enlarged to a
complete L-theory.

[Idea: if Γ 6` σ, then Γ ∪ {¬σ} 6` ⊥, so Γ ∪ {¬σ} is a consistent enlargement
of Γ. Keep doing this until you arrive at a complete theory.]

Henkin’s Theorem. Every consistent theory can be enlarged to a consistent
theory with witnesses, provided we allow ourselves to enlarge the language to
include more constant symbols.

[Idea: suppose Γ ∪ {(∃x)ϕ(x)→ ϕ(c)} ` ⊥ where c /∈ L. Then
Γ ` ¬((∃x)ϕ(x)→ ϕ(c)), or Γ ` (∃x)ϕ(x) ∧ ¬ϕ(c). Need quantifier axioms
and rules which permit this deduction:

(∃x)ϕ(x) ∧ ¬ϕ(c), (∀x)((∃x)ϕ(x) ∧ ¬ϕ(x)), (∃x)ϕ(x) ∧ ¬(∃x)ϕ(x)),⊥.

Thus Γ ` ⊥. Now repeat the idea of Lindenbaum’s Theorem with σ equal to
¬((∃x)ϕ(x)→ ϕ(c)).]
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Finally: Henkin theories have an obvious model.

Let H be a Henkin L-theory. (= consistent, complete, with witnesses.)

Let C be the set of constants in L. It will be the domain of an L-structure.

If c ∈ L, then define cC = c ∈ C.

If R(x1, . . . , xn) is a predicate symbol, declare that RC(c1, . . . , cn) is true if
R(c1, . . . , cn) ∈ H.

If F(x1, . . . , xn) is a function symbol, declare that FC(c1, . . . , cn) = d is true
if (F(c1, . . . , cn) = d) ∈ H.

Define an equivalence relation θ on C by c ≡ d (mod θ) if (c = d) ∈ H.

It will be the case that C/θ |= H. In fact, H = Th(C/θ). C/θ is called the
Henkin model of H.
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