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9. Which finite simple unital rings R have the property that Th(R) has quantifier elimination?

Proposition: For a finite simple unital ring, R, Th(R) has quantifier elimination if and only if
R = M, (F,) for p prime withn =1 or (n=2and k = 1).

Claim 1: If R is a finite simple unital ring then R = M,,(FF,) for some natural number n and
some prime power q.

Proof: By the Artin-Wedderburn Theorem a semisimple ring, R, is isomorphic to a product of
n; X n; matrix rings over a division ring, D for 1 < ¢ < m for some nq,...,n,,, m € N. Hence
if R is simple, R is isomorphic to a single n x n matrix ring over a division ring. Since R is
finite the division ring, D, is necessarily a finite division ring. Since D is a division ring, D is
a domain (i.e. D has no zero divisors). By Wedderburn’s Little Theorem, every finite domain
is a field. Therefore D is a finite field, and so D = F, for some prime power ¢ and so R is an
n X n matrix ring over IF, for some natural number R and some prime power g.

Claim 2: The theory of a finite field has elimination of quantifiers.

Proof: Let ¢ = p* for some prime p and some positive integer k. Suppose that K and L are
isomorphic unital subrings of F,, the field with ¢ elements, with isomorphism «. Then |K| =
|L| = p™ for some 0 < m < k. For any a € K\ {0}, a?"~! =1 and so K is closed under inverses.
Hence K is a subfield of F,, and so too is L. Since |K| = |L|, K = L = {a € F,|a?" = a}.
Hence «a is a power of the Frobenius map, x — xP since the Frobenius map is a generator for the
automorphism group on a finite field. So a: K — K, x + 2" for some s. This map extends to
amap a : F, — F,, x — 2" which is an isomorphism of F,. Hence for any prime power, ¢, F,
is ultrahomogeneous and so by problem 4 on this assignment, [, has elimination of quantifiers.

Claim 3: For n > 3, R := M,,(F,), Th(R) does not have elimination of quantifiers for any prime
power, ¢.

Proof: Let e; be the matrix in R := M, (F,) with a 1 in the (¢, ¢)-position and zeros elsewhere for
1 <i < n. Consider the unital subrings S and 7" of R where S = {ae; +b(1 —e;)|a,b € F,} and
S ={ale; +e2) +b(1 —e; —ez)|a,b € F,}. Then S and T are isomorphic via the isomorphism
f:8—=T. ae; +b(1 —e1) — ales +e3) +b(1 —eg —ey) for a,b € F,. Suppose that R has
quantifier elimination. Then by problem 4 in this assignment, R is ultrahomogeneous and so
f extends to an automorphism, f, of R. By the Skolem-Noether Theorem, since R is a finite
simple unital ring, every automorphism of R is inner (i.e. given by conjugation). Hence there
exists a unit ¢ € R such that f(x) = ¢ lzc for all # € R. In particular, since fAextends f,
f(el) = f(e1) = e; + ey = ¢ teje. However, there is no such ¢ € R so that ¢ lejc = e + ey
since the rank of cle;c equals the rank of e;, which is 1 while the rank of e; + ey is 2. Hence
f does not extend to an automorphism of R and so R is not ultrahomogeneous. So by problem
4, Th(R) does not have elimination of quantifiers.

Claim 4: If ¢ = p* for some prime p and some k > 1 then for R := My(F,), Th(R) does not
have quantifier elimination.

Proof: Consider f : F, — R, x — {az

0 r 0
0 x} andg.Fq—>R,xl—>[

0 a(x)] where a : Fy — F,

is the Frobenius map, z — z?.
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Since f and g are both clearly injective unital ring homomorphisms, for S = im(f) and T' =
im(g), we have that S = T via isomorphism h := go f~!. Suppose there exists an automorphism,
h:R—R extending h. Then as above, by the Skolem-Noether Theorem, there exists a unit
¢ € R such that h(z) = ¢ 'zc for all z € R. Since h extends h, we have that ¢! f(z)c = g(x)
for every x € F,. However, since f(z) is a diagonal matrix for each z, f(z) commutes with ¢
for each x and so ¢! f(x)c = f(x) = g(x). In particular, this implies that a(x) = 2P = x for
all x € F,. However, since F, is a field of order ¢ = p* for k > 1, there exists y € F, such
that y? # y. Therefore h is an isomorphism of unital subrings of R that does not extend to an
automorphism of R, and so R is not ultrahomogeneous. By problem 4, Th(R) does not have
quantifier elimination.

Claim 5: If p is prime then for R := M(F,), Th(R) has quantifier elimination.

Proof: Let S and T be isomorphic unital subrings of R via isomorphism f. Then S and T are
vector spaces over the field of prime order [F,.

Case dimp, S = 1: In this case f is the identity and S = T since f maps 1 to 1. So clearly f
extends to an automorphism of R.

Case dimp, S = 2: Since S is unital, S is the F,-span of the identity matrix, I, and another
matrix, A. Since f : S — T is an isomorphism, 7" is the span of I and B := f(A). Now A and B
satisfy the same minimal polynomial as follows. Since f maps the identity to itself and since F,
is a prime field, f maps ol to itself for each @ € [F,,. This makes f an F,-algebra homomorphism.
Hence f(32F i AY) = S8 au(f(A)' = 2F ;B and so f preserves minimal polynomials.
Note that if F, is not a prime field then f need not be an [F;-algebra homomorphism and so
f may not preserve minimal polynomials. Since A and B are 2 X 2 matrices with the same
minimal polynomial, they must have the same Jordan form. Therefore A and B are conjugate
and f is an isomorphism given by conjugation, which extends to an automorphism of R.

Case dimp, S = 3: Let S act on V = IFIZ), the [F, vector space of 2 x 1 column vectors, in the
usual way. Since R acts faithfully on V and S < R, S acts faithfully on V. This makes V'
an S-module. Assume for a contradiction that V is a simple S-module. By the Wedderburn-
Artin Theorem, since S is an Artinian ring with semi-simple module, V| S is simple. However,
this cannot happen as follows. S is a simple ring with an isomorphic copy of I, in its center.
Therefore S is isomorphic to a matrix ring over a field extension of IF,. Since dimg, (S) = 3,
this field extension cannot be dimension 2 over I, otherwise S has even dimension. Clearly this
extension cannot be dimension larger than 3 over F,. Hence S is isomorphic to F,s. However,
[F,s is not a subring of R = M,(IF,) since every element of R satisfies a degree 2 polynomial
over [F, while there are elements of IF,s which satisfy a degree 3 polynomial and no degree 2

polynomial over [F,. Therefore S is not simple and so V' is not a simple S-module.

Since V' is not simple and dimg, (V') = 2, V must have a submodule, U, with dimg, (U) = 1. Let
0=# 2 € U. Let {x,y} be a basis for V for some y. Then elements of S map z to a multiple of x
and so with respect to this basis, elements of S are upper triangular. Since S has dimension 3
over IF,,, S must be the ring of upper triangular matrices. Similarly, with respect to some other
basis, T" is the ring of upper triangular matrices. But change of basis is given by conjugation,
and so S and T are conjugate subrings. Hence f : S — T is given by conjugation and so f
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extends to an automorphism of R = M(F,).
Case dimy, S = 4: In this case, S = R and so f is an automorphism of R.

Therefore any isomorphism between unital subrings of R = M,(IF,) extends to an automorphism
of R and so R is ultrahomogeneous. By problem 4, since R is finite, Th(R) has quantifier
elimination.

So, for a finite simple unital ring, R, T'h(R) has quantifier elimination if and only if R = M, (F )
for p prime with n =1 or (n =2 and k = 1).



