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10. In this problem a graph is a structure G = 〈V ;E〉 where E is a binary, irreflexive,
symmetric relation on V .

(a) Classify the finite disconnected graphs G such that Th(G) has quantifier elimination.
(b) Classify the finite graphs G with disconnected complement such that Th(G) has

quantifier elimination.
(c) It is known that every finite graph G where Th(G) has quantifier elimination is of the

type in part (a) or part (b) or else is one of the following two graphs: (i) the 5-element cycle,
and (ii) the line graph of K3,3. Draw pictures of these two graphs. (Include the definitions
of K3,3 and line graph in your solution.)

Proof (a). In this proof we will use the result of modthhw3p4:

Theorem 1. A structure is ultrahomogeneous if every isomorphism between finitely gener-
ated substructures extends to an automorphism. If A is a finite L-structure, then Th(A) has
quantifier elimination if and only if A is ultrahomogenous.

Claim: Let G be a finite disconnected graph. G is ultrahomogeneous if and only if G is
a disjoint union of isomorphic copies of Kn, where Kn is the complete graph on n vertices.

Let G = 〈V ;E〉 be a finite, disconnected, ultrahomogeneous graph.
Choose any two vertices u, v ∈ V . The singleton substructures they generate are iso-

morphic, so by the ultrahomogeneity of G there is an automorphism of G that maps u to v.
This establishes that Aut(G) acts transitively on V , and one consequence of this is that all
vertices of G have the same degree.

We have assumed that G is not connected, so it is possible to choose u, v ∈ V from
different components. Now choose distinct w, z ∈ V that are not adjacent to each other (i.e.
E(w, z) fails). The doubleton substructures 〈{u, v};E〉 and 〈{w, z};E〉 are both subgraphs
that are discrete (meaning: no edges), hence they are isomorphic. By ultrahomogeneity
there must be an automorphism of G mapping {u, v} to {w, z}. But automorphisms preserve
connected components, and u and v are in different components, so we conclude that w and
z must lie in different components. The conclusion to draw is that if w is not connected by a
single edge to z, then w cannot be connected to z by a path of any length. Equivalently, the
connected components of G are complete. This establishes that G is the disjoint union of
complete components G = Kn1 t · · · tKnr . But we established in the preceding paragraph
that all vertices of G have the same degree, so n1 = · · · = nk; let this common value be
called n. This completes the proof of the forward direction of the Claim.

Now we argue the reverse direction. Assume that G is a finite disjoint union of copies
of Kn for some n. Our goal is to prove that G is ultrahomogeneous. Let f : M → N
be an isomorphism between substructures of G. Our goal is to show that f extends to an
automorphism of G. It will suffice, by finiteness, to show that if |M | < |G| then it is possible
to extend f to an isomorphism f ∗ : M∗ → N∗ where M∗, N∗ each have one more vertex
than M,N respectively. (We will write VG, VM , VM∗ etc to indicate the vertex set of a given
substructure of G.)
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Write M as a disjoint union of its components M = M1 t · · · tMk and let N = f(M1)t
· · · t f(Mk) = N1 t · · · tNk.

Case 1. G has more components than M .

In this case, there exists u ∈ VG that belongs to none of the components of G containing
any Mi. Now N has the same number of components as M , so there must also exist an
element v ∈ VG that belongs to none of the components of G containing any Ni. Define
VM∗ = VM ∪ {u} and VN∗ = VN ∪ {v}. We have enlarged both M and N by adding a
singleton connected component to each. We can extend f to f ∗ : M∗ → N∗ by f ∗|M = f
and f ∗(u) = v. To check that f ∗ is an isomorphism, we must verify that it maps adjacent
pairs to adjacent pairs, and nonadjacent pairs to nonadjacent pairs. This is easy to see,
because the vertex added to each subgraph is not adjacent to any of the earlier vertices.

Case 2. Some component of M is properly contained in some component of G.

Suppose that some component Mi of M is properly contained in some G-component.
This will be true of Mi if and only if |VMi

| < n. Since |VMi
| = |VNi

|, if this is true for Mi it
will also be true for Ni.

Choose elements u, v ∈ VG such that u /∈ VMi
and v /∈ VNi

, but u belongs to the G-
component of Mi and v belongs to the G-component of Ni. Define VM∗ = VM ∪ {u} and
VN∗ = VN ∪ {v}. We have enlarged both M and N by expanding their ith components to
larger complete subgraphs. We can extend f to f ∗ : M∗ → N∗ by f ∗|M = f and f ∗(u) = v.
To check that f ∗ is an isomorphism, we must verify that it maps adjacent pairs to adjacent
pairs, and nonadjacent pairs to nonadjacent pairs. For this it is enough to observe that u is
distinct from every vertex in VM , it is adjacent to every vertex in VMi

, and it is not adjacent
to any other vertex in VM , while v has the same properties with respect to N .

The two cases cover all cases where M and N are proper subgraphs of G. Since any
isomorphism between proper subgraphs can always be extended by one point, we can continue
these extensions until an automorphism of G is obtained.

Proof (b). In this part we argue that if G is a graph with the property that Th(G)
has quantifier elimination, then the complement G′ also has the property that Th(G′) has
quantifier elimination. Here if G = 〈V ;E〉 is the graph with vertex set V and irreflexive edge
relation E(x, y), then G′ is defined to be the graph 〈V ;E ′〉 with the same vertex set and the
irreflexive edge relation E ′(x, y) defined by the formula

(x 6= y) ∧ ¬E(x, y) (†)

That is, a nonloop edge belongs to G iff it does not belong to G′.
We derive the result from a more general statement:

Theorem 2. Let L and L′ be relational languages. Let A be an L-structure and let A′ be an
L′-structure. Assume that

1. A and A′ share the same underlying set, A.
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2. Each fundamental relation R(x) of L has a quantifier-free L′-definition. That is, there
exists a quantifier-free formula ρ′(x) of A′ such that R[A] = ρ′[A′]. (The same tuples
from An are in R-relation as those in ρ′-relation.)

3. Each fundamental relation R′(x) of L′ has a q.f. L-definition.

Then Th(A) has quantifier elimination iff Th(A′) has quantifier elimination.

Roughly this says that if A and A′ are “the same structure” up to a change of language
that respects the property of a formula of being quantifier-free, then Th(A) has quantifier
elimination iff Th(A′) has quantifier elimination.

Without writing out the proof of this theorem, we simply point out the following

1. The correspondences R 7→ ρ′ and R′ 7→ ρ can be extended to correspondences between
arbitrary L-formulas to arbitrary L′-formulas which maps any q.f.-L-formula α(x) to
a q.f.-L′-formula α′(x) in a way that preserves interpretations (α[A] = α′[A′]).

2. Assume that Th(A) has q.e., and let’s argue that Th(A′) also has it. Choose any
L′-formula ϕ′(x). Let ϕ(x) be the corresponding L-formula. Let α(x) be the q.f.-L-
formula equivalent to ϕ(x). Let α′(x) be the q.f.-L′-formula corresponding to α(x).
Then α′(x) will be a q.f.-L′-formula equivalent to ϕ′(x). Hence Th(A′) has q.e.

So, to complete the argument for (b), it suffices to show that the edge relation E ′ has a
q.f.-definition in terms of E (and vice versa). That was already done above at (†). (For the
“vice versa” part, interchange the roles of E and E ′.)

(c).

Figure 1: the 5-element cycle, K3,3, and L(K3,3)

A complete bipartite graph is a graph whose vertices can be partitioned into two subsets
V1 and V2 such that each vertex in V1 connects to every vertex in V2 and that there are no
edges between elements within each partition.

Given a graph G, the line graph L(G) is a graph such that each edge in G is interpreted
as a single vertex in L(G). Edges in the graph G which are adjacent appear as vertices in
the graph L(G) which are adjacent.
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