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9. Which finite simple unital rings R have the property that Th(R) has quantifier elimination?

Proposition: For a finite simple unital ring, R, Th(R) has quantifier elimination if and only if
R ∼= Mn(Fpk) for p prime with n = 1 or (n = 2 and k = 1).

Claim 1: If R is a finite simple unital ring then R ∼= Mn(Fq) for some natural number n and
some prime power q.

Proof: By the Artin-Wedderburn Theorem a semisimple ring, R, is isomorphic to a product of
ni × ni matrix rings over a division ring, D for 1 ≤ i ≤ m for some n1, . . . , nm,m ∈ N. Hence
if R is simple, R is isomorphic to a single n × n matrix ring over a division ring. Since R is
finite the division ring, D, is necessarily a finite division ring. Since D is a division ring, D is
a domain (i.e. D has no zero divisors). By Wedderburn’s Little Theorem, every finite domain
is a field. Therefore D is a finite field, and so D = Fq for some prime power q and so R is an
n× n matrix ring over Fq for some natural number R and some prime power q.

Claim 2: The theory of a finite field has elimination of quantifiers.

Proof: Let q = pk for some prime p and some positive integer k. Suppose that K and L are
isomorphic unital subrings of Fq, the field with q elements, with isomorphism α. Then |K| =
|L| = pm for some 0 < m ≤ k. For any a ∈ K \{0}, apm−1 = 1 and so K is closed under inverses.
Hence K is a subfield of Fq, and so too is L. Since |K| = |L|, K = L = {a ∈ Fq|ap

m
= a}.

Hence α is a power of the Frobenius map, x 7→ xp since the Frobenius map is a generator for the
automorphism group on a finite field. So α : K → K, x 7→ xp

s
for some s. This map extends to

a map α̂ : Fq → Fq, x 7→ xp
s

which is an isomorphism of Fq. Hence for any prime power, q, Fq

is ultrahomogeneous and so by problem 4 on this assignment, Fq has elimination of quantifiers.

Claim 3: For n ≥ 3, R := Mn(Fq), Th(R) does not have elimination of quantifiers for any prime
power, q.

Proof: Let ei be the matrix in R := Mn(Fq) with a 1 in the (i, i)-position and zeros elsewhere for
1 ≤ i ≤ n. Consider the unital subrings S and T of R where S = {ae1 + b(1− e1)|a, b ∈ Fq} and
S = {a(e1 + e2) + b(1− e1 − e2)|a, b ∈ Fq}. Then S and T are isomorphic via the isomorphism
f : S → T . ae1 + b(1 − e1) 7→ a(e1 + e2) + b(1 − e1 − e2) for a, b ∈ Fq. Suppose that R has
quantifier elimination. Then by problem 4 in this assignment, R is ultrahomogeneous and so
f extends to an automorphism, f̂ , of R. By the Skolem-Noether Theorem, since R is a finite
simple unital ring, every automorphism of R is inner (i.e. given by conjugation). Hence there

exists a unit c ∈ R such that f̂(x) = c−1xc for all x ∈ R. In particular, since f̂ extends f ,

f̂(e1) = f(e1) = e1 + e2 = c−1e1c. However, there is no such c ∈ R so that c−1e1c = e1 + e2
since the rank of c−1e1c equals the rank of e1, which is 1 while the rank of e1 + e2 is 2. Hence
f does not extend to an automorphism of R and so R is not ultrahomogeneous. So by problem
4, Th(R) does not have elimination of quantifiers.

Claim 4: If q = pk for some prime p and some k > 1 then for R := M2(Fq), Th(R) does not
have quantifier elimination.

Proof: Consider f : Fq → R, x 7→
[
x 0
0 x

]
and g : Fq → R, x 7→

[
x 0
0 α(x)

]
where α : Fq → Fq

is the Frobenius map, x 7→ xp.
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Since f and g are both clearly injective unital ring homomorphisms, for S = im(f) and T =
im(g), we have that S ∼= T via isomorphism h := g◦f−1. Suppose there exists an automorphism,

ĥ : R → R extending h. Then as above, by the Skolem-Noether Theorem, there exists a unit
c ∈ R such that ĥ(z) = c−1zc for all z ∈ R. Since ĥ extends h, we have that c−1f(x)c = g(x)
for every x ∈ Fq. However, since f(x) is a diagonal matrix for each x, f(x) commutes with c
for each x and so c−1f(x)c = f(x) = g(x). In particular, this implies that α(x) = xp = x for
all x ∈ Fq. However, since Fq is a field of order q = pk for k > 1, there exists y ∈ Fq such
that yp 6= y. Therefore h is an isomorphism of unital subrings of R that does not extend to an
automorphism of R, and so R is not ultrahomogeneous. By problem 4, Th(R) does not have
quantifier elimination.

Claim 5: If p is prime then for R := M2(Fp), Th(R) has quantifier elimination.

Proof: Let S and T be isomorphic unital subrings of R via isomorphism f . Then S and T are
vector spaces over the field of prime order Fp.

Case dimFp S = 1: In this case f is the identity and S = T since f maps 1 to 1. So clearly f
extends to an automorphism of R.

Case dimFp S = 2: Since S is unital, S is the Fp-span of the identity matrix, I, and another
matrix, A. Since f : S → T is an isomorphism, T is the span of I and B := f(A). Now A and B
satisfy the same minimal polynomial as follows. Since f maps the identity to itself and since Fp

is a prime field, f maps αI to itself for each α ∈ Fp. This makes f an Fp-algebra homomorphism.

Hence f(
∑k

i=0 αiA
i) =

∑k
i=0 αi(f(A))i =

∑k
i=0 αiB

i and so f preserves minimal polynomials.
Note that if Fq is not a prime field then f need not be an Fq-algebra homomorphism and so
f may not preserve minimal polynomials. Since A and B are 2 × 2 matrices with the same
minimal polynomial, they must have the same Jordan form. Therefore A and B are conjugate
and f is an isomorphism given by conjugation, which extends to an automorphism of R.

Case dimFp S = 3: Let S act on V = F2
p, the Fp vector space of 2 × 1 column vectors, in the

usual way. Since R acts faithfully on V and S ≤ R, S acts faithfully on V . This makes V
an S-module. Assume for a contradiction that V is a simple S-module. By the Wedderburn-
Artin Theorem, since S is an Artinian ring with semi-simple module, V , S is simple. However,
this cannot happen as follows. S is a simple ring with an isomorphic copy of Fp in its center.
Therefore S is isomorphic to a matrix ring over a field extension of Fp. Since dimFp(S) = 3,
this field extension cannot be dimension 2 over Fp otherwise S has even dimension. Clearly this
extension cannot be dimension larger than 3 over Fp. Hence S is isomorphic to Fp3 . However,
Fp3 is not a subring of R = M2(Fp) since every element of R satisfies a degree 2 polynomial
over Fp while there are elements of Fp3 which satisfy a degree 3 polynomial and no degree 2
polynomial over Fp. Therefore S is not simple and so V is not a simple S-module.

Since V is not simple and dimFp(V ) = 2, V must have a submodule, U , with dimFp(U) = 1. Let
0 6= x ∈ U . Let {x, y} be a basis for V for some y. Then elements of S map x to a multiple of x
and so with respect to this basis, elements of S are upper triangular. Since S has dimension 3
over Fp, S must be the ring of upper triangular matrices. Similarly, with respect to some other
basis, T is the ring of upper triangular matrices. But change of basis is given by conjugation,
and so S and T are conjugate subrings. Hence f : S → T is given by conjugation and so f
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extends to an automorphism of R = M2(Fp).

Case dimFp S = 4: In this case, S = R and so f is an automorphism of R.

Therefore any isomorphism between unital subrings of R = M2(Fp) extends to an automorphism
of R and so R is ultrahomogeneous. By problem 4, since R is finite, Th(R) has quantifier
elimination.

So, for a finite simple unital ring, R, Th(R) has quantifier elimination if and only if R ∼= Mn(Fpk)
for p prime with n = 1 or (n = 2 and k = 1).
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