
Theorem 1. (Ultrafilter Convergence Theorem) Let X = 〈X; T 〉 be a topological space.

(1) If Y ⊆ X and ` ∈ X, then ` ∈ Y iff there is an ultrafilter U on some nonempty set
I and a function f : I → X such that
(a) f(I) ⊆ Y , and
(b) limU f = `.

(2) X is compact iff for every ultrafilter U on a set I and every function f : I → X there
is at least one ` ∈ X such that limU f = `.

(3) X is Hausdorff iff for every ultrafilter U on a set I and every function f : I → X
there is at most one ` ∈ X such that limU f = `.

Proof. [(1), ⇒] Assume that ` ∈ Y . Let I be the set of open nhoods of ` in X . Order I
by reverse inclusion: U � V iff U ⊇ V . The collection of principal order filters1 in this
up-directed poset has the FIP, so it generates a proper filter F on I, which may be extended
to an ultrafilter U . For each U ∈ I choose a point yU ∈ U ∩ Y ; such a point exists since
` ∈ Y . Define f : I → X : U 7→ yU .

Clearly f(I) = {yU | U ∈ I} ⊆ Y , so (a) holds. To verify (b), choose an open nhood U
of `, and consider f−1(U). The set U contains yV for every V satisfying U � V , so f−1(U)
contains [U), which is an element of F and therefore also an element of U . This proves (a).

[(1), ⇐] We assume (a) and (b) and show that every open set O containing ` intersects

Y . Since limU f
(b)
= ` we have f−1(O) ∈ U . Since ∅ /∈ U we have f−1(O) 6= ∅. Hence

∅ 6= f−1(O) = f−1(O) ∩ I
(a)
= f−1(O) ∩ f−1(Y ) = f−1(O ∩ Y ),

which implies that O ∩ Y 6= ∅.
[(2), ⇒] Assume that X is compact, but there is some ultrafilter U on some set I and

some function f : I → X with no ` satisfying limU f = `. Each x ∈ X must have an open
neighborhood Ox such that f−1(Ox) /∈ U . By compactness, the open cover {Ox | x ∈ X}
has a finite subcover {O1, . . . , On}. This yields ∪ni=1f

−1(Oi) = f−1(∪ni=1Oi) = I ∈ U . We
claim that if a finite union of subsets of I lies in U then at least one summand lies in U .
Since no set f−1(Oi) lies in U , this claim produces a contradiction.

We prove the contrapositive of the claim just mentioned, namely that V,W /∈ U implies
V ∪W /∈ U . If V,W /∈ U , then X\V,X\W ∈ U , hence (X\V )∩(X\W ) = X\(V ∪W ) ∈ U .
Therefore V ∪W /∈ U .

[(2), ⇐] Choose a collection C of closed subsets of X with the FIP. Let I = X and let F
be the filter on I generated by C. Let U be an ultrafilter extending F . Let f : I → X be the
identity function. Choose ` so that limU f = `. Let N` be the set of open neighborhoods of
`. If O ∈ N`, then O = f−1(O) ∈ U . This yields C ∪ N` ⊆ U , showing that C ∪ N` has the
FIP. This proves that ` belongs to every closed set in C, hence that ` ∈

⋂
C.

[(3), ⇒] Assume X is Hausdorff and that limU f = ` and limU f = m for appropriate
U , f, `,m with ` 6= m. Choose disjoint open neighborhoods O` and Om of ` and m respec-
tively. Then f−1(O`) and f−1(Om) are disjoint sets in U , a contradiction.

1sets of the form (U ] := {V ∈ T | U � V }
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[(3), ⇐] Now suppose that X is not Hausdorff and that ` 6= m are elements of X that
cannot be separated by disjoint open sets. If N` and Nm are the open neighborhood systems
of these two points, then N` ∪ Nm has the FIP. Let I = X, let U be an ultrafilter on I
containing N` ∪ Nm, and let f : I → X be the identity function. Both limU f = ` and
limU f = m hold, establishing the contrapositive of (2), ⇐. �


