
LINEAR ALGEBRA (MATH 3130): REVIEW SHEET
From the book: Sections 2.7–6.5, excluding Sections 4.8, 5.6–5.8.

VII. Affine transformations.
(a) An affine transformation has the form T (x) = Ax+t. Examples: translations, plane reflections

about an arbitrary line, and plane rotations about an arbitrary point.
(b) Affine transformations in Rn may be represented in homogeneous coordinates in Rn+1 by ma-

trices of the form
[

A t
0 1

]
.

VIII. Subspaces
(a) The structure of subspaces of Rn.
(b) Four fundamental subspaces: Col(A), Nul(A), Row(A) = Col(AT ), and Nul(AT ).
(c) Ordered and unordered bases for a subspace.
(d) We gave algorithms for finding bases for Nul(A), Row(A), and Col(A).
(e) Standard basis for Rn.
(f) Dimension of a subspace.
(g) Rank and nullity of a matrix. Rank + nullity theorem.
(h) Proof that “dimension” is well defined, namely, that the size of any independent set is less or

equal the size of any spanning set, and that a maximal independent set is spanning while a
minimal spanning set is independent.

IX. The determinant.
(a) Signed volume.
(b) Minor, cofactor, definition of the determinant via the Laplace expansion.
(c) det(A) is defined only if A is square. det(A) 6= 0 iff the columns of A are independent.
(d) Adjugate matrix. Fact that A · adj(A) = det(A) · I, hence A−1 = (1/ det(A))adj(A) when A is

invertible.
(e) Further properties: det(AB) = det(A) det(B), the determinant can be computed by Gaussian

elimination, the determinant of a block triangular matrix is the product of the determinants
of the blocks, if T (x) = Ax, then the determinant of A measures the “volume expansion”
associated with T .

(f) “Correct” definition: the determinant is the unique alternating multilinear function d of n
variables defined on Rn for which d(e1, . . . , en) = 1.

(g) Permutation expansion of the determinant. Fact that det(A) = det(AT ).
(h) Cramer’s Rule for solving a linear system Ax = b with invertible A.

X. Abstract vector spaces.
(a) Meaning of the word “abstract”.
(b) Definition and examples of abstract vector spaces, e.g., Mm×n(R), Pn(t), Ck([0, 1]). We com-

puted that Mm×n(R), has dimension mn, Pn(t) has dimension n+ 1, and that C0([0, 1]) must
be infinite dimensional.

(c) Coordinates relative to a basis.
(d) Definition of “isomorphism” of vector spaces. Proof that every finitely generated real vector

space is isomorphic to Rn for some finite n.
(e) Matrices, C [T ]B, for linear transformations between abstract vector spaces. Change of basis

matrices, C [I]B.

XI. Markov chains.
(a) Definitions of: probability vector, (left, right, doubly) stochastic matrix and Markov chain.
(b) Steady state vector.
(c) Regular stochastic matrices have a unique steady state vector that is a probability vector.
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XII. Eigenvalues, eigenvectors, eigenspaces.
(a) Eigenvectors identify “preserved directions” of a linear transformation T : V → V .
(b) Definitions of eigenvector, eigenvalue, eigenspaces.
(c) Methods of calculation: characteristic polynomial χA(λ) equals det(A− λI); e-values of A are

the roots of χA(λ) = 0; e-space Vλ equals Nul(A− λI); λ-eigenvectors are the nonzero vectors
of Vλ. Fast calculation of e-values for (block) triangular matrices.

XIII. Diagonalization.
(a) Structure of roots of a real polynomial over R or C, and of a complex polynomial over C.

Algebraic multiplicity of an e-value.
(b) Geometric multiplicity of an e-value.
(c) Defn. of “diagonalizable”. Thm. A transformation T : V → V is diagonalizable iff V has a basis

consisting of e-vectors for T iff the geometric multiplicity of each e-value equals its algebraic
multiplicity.

(d) Independence of subspaces. Sums of subspaces and direct sums of independent subspaces. A
sum of distinct e-spaces is direct. T : V → V is diagonalizable iff V =

⊕
λ Vλ. (Side observation:

dim(U ⊕W ) = dim(U) + dim(W ).)
(e) Similarity: A is similar to B if A is a conjugate of B, i.e., A = S−1BS. Similarity is an

equivalence relation on the set of n × n matrices. Matrices are similar iff they represent the
same transformation relative to different bases. Similar matrices have the same characteristic
polynomial, hence same e-values. If A = S−1BS, then S : V Aλ → V Bλ is an isomorphism for
each e-value λ. A is diagonalizable iff it is similar to a diagonal matrix.

(f) (The nondiagonalizable case.) Generalized e-spaces V
(∞)
λ =

⋃
k Nul(A− λI)k.

(g) The algebraic multiplicity of λ is dim(V
(∞)
λ ).

(h) If T : V → V is defined over C and V is f.g., then V is the direct sum of its generalized e-spaces.

(i) Jordan block, Jordan canonical form. Eigenchains in V
(∞)
λ yield JCF. Every transformation

defined over C is similar to a matrix in JCF, and the JCF is unique up to a permutation of
Jordan blocks.

(j) The JCF of A can be determined indirectly from the numbers ‘nullity(A− λI)k’ for all λ and
k.

(k) Diagonalization and JCF of T over R instead of C: V
(∞)
λ = V

(∞)

λ
, and V

(∞)
λ ⊕ V (∞)

λ
has a nice

real basis consisting of the real and imaginary parts of the vectors in the λ-eigenchains in V
(∞)
λ .

This choice of basis results in diagonal form or JCF with 2 × 2 real blocks replacing pairs of
1× 1 conjugate complex blocks.

XIV. Orthogonality.
(a) Dot product. (Defn. Arithmetic facts follow from those of matrices, since u • v = uTv.)
(b) Length in Rn. Unit vector in direction v is v/‖v‖.
(c) Angle in Rn via u • v = ‖u‖‖v‖ cos(θ). Cauchy-Schwarz Inequality.
(d) Orthogonality. Orthogonal complement. Row(A)⊥ = Nul(A). Algorithm for finding the or-

thogonal complement of a set of vectors.
(e) Orthonormal set of vectors. Angle-preserving linear transformations. Orthogonal matrices.
(f) Approximate solutions to Ax = b via least squares. Normal equations ATAx = ATb. Fitting

curves to data.
(g) Orthogonal projection onto a vector or subspace. Gram-Schmidt algorithm.

General advice on preparing for a math test.
Be prepared to demonstrate understanding in the following ways.

(i) Know the definitions of new concepts, and the meanings of the definitions.
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(ii) Know the statements and meanings of the major theorems.
(iii) Know examples/counterexamples. (The purpose of an example is to illustrate the extent of a

definition or theorem. The purpose of a counterexample is to indicate the limits of a definition
or theorem.)

(iv) Know how to perform the different kinds of calculations discussed in class.
(v) Be prepared to prove elementary statements. (Understanding the proofs done in class is the best

preparation for this.)
(vi) Know how to correct mistakes made on old HW.

Sample Problems.

(1) From the book: Supplementary problems for chapters 3–6 (excluding problems marked [M]).

(2) Computational problems:
(a) Using homogeneous coordinates, find a matrix representation for the transformation that rotates

the plane 45◦ around the point

[
1
2

]
.

(b) Find bases for the null space, row space and column space of the 3 × 3 matrix whose entries
are all 1. What are the dimensions of these spaces?

(c) Put the numbers 1, 2, . . . , 9 into a 3× 3 matrix in order. What is the determinant?

(d) Find a change of basis matrix from B =

 1
1
0

 ,
 1

0
0

 ,
 1

1
1

 and

C =

 0
0
1

 ,
 0

1
1

 ,
 1

1
1

.

(e) Find the characteristic equation, e-values, and e-spaces of A =

[
1 2
2 4

]
. Find a matrix S that

conjugates A into diagonal form.

(f) Find a basis for


 1

2
3

 ,
 3

2
1


⊥

.

(3) Can any of the following exist? (If so, give an example, if not give a reason.)
(a) A vector space with an empty basis.
(b) A matrix of rank zero.
(c) A matrix with no determinant.
(d) A matrix with a zero dimensional eigenspace.
(e) An invertible matrix whose row sums are all zero.
(f) A real matrix whose null space equals its column space.
(g) A matrix A such that nullity(A) = 1 and nullity(A2) = 3.
(h) A matrix where the dimension of the row space is greater than the dimension of the column

space.
(i) A real number that does not arise as the determinant of a real matrix.
(j) A vector space with no subspaces.
(k) An isomorphism between vector spaces of different dimensions.
(l) A matrix whose row space is isomorphic to its column space.

(m) A matrix whose characteristic polynomial is λ2 + λ+ 1.
(n) An eigenvalue whose geometric multiplicity exceeds its algebraic multiplicity.
(o) A real 10× 10 matrix with only one eigenvector.
(p) A matrix equal to its adjugate.
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(q) A left stochastic matrix that is not right stochastic.
(r) Conjugate matrices of different ranks.
(s) Conjugate matrices that are not similar.
(t) A matrix that is diagonalizable over C but not diagonalizable over R.
(u) An orthogonal basis for R3 that is not orthonormal.
(v) A nondiagonalizable complex matrix.
(w) An orthogonal matrix with determinant zero.
(x) A 3× 3 orthogonal matrix with no zero entries.
(y) Subspaces U and W such that U +W 6= U ⊕W .
(z) A real vector that is orthogonal to itself.

(3) Give the dimensions of the following real vector spaces.
(a) The space of real polynomials p(t) of degree at most 3 which satisfy p(1) = p(−1) = 0.
(b) The space of 3× 3 upper triangular real matrices.
(c) The space of twice continuously differentiable functions y = f(x) satisfying y′′ = 0.

(4) How would you solve the following problem? Suppose that V has basis (v1, . . . ,vn) and U is a
subspace of V with basis (u1, . . . ,um). How do you find a basis for V whose first m vectors form a
basis for U?

(5) Suppose that you are given bases B and C for subspaces U and W of a space V . How would you
find a basis for U + W? How would you find a basis for U ∩W? (Hint: in both cases, you should
apply Gaussian Elimination to the matrix [B|C]. How should you use the results?)

(6) Is there a 3 × 3 matrix whose minors are nonzero and all equal? Is there a 3 × 3 matrix whose
cofactors are nonzero and all equal?

(7) Let S be a 2× 2 invertible matrix. Consider the linear transformation of “conjugation by S”:

T : M2×2(R)→M2×2(R) : A 7→ S−1AS.

Show that if λ is an e-value of T , then so is λk for any k. Show that 0 is not an e-value of T . Explain
why the e-values of T can only be +1 or −1. Show that +1 occurs as an e-value with multiplicity
at least 2.

(8) What is the characteristic polynomial for the n× n matrix whose entries are all 1?

(9) Show that dim(U+W ) = dim(U)+dim(W )−dim(U∩W ). (Solution 1 hint: choose a basis for U∩W
and extend it in different ways to bases for both U and W . Show that all the vectors together form
a basis for U + W .) (Solution 2 hint: let B and C be bases for U and W . Apply the rank+nullity
theorem to the matrix [B|C].)

(10) The points

 0
0
0

,

 1
1
0

,

 1
0
1

, and

 0
1
1

 are the vertices of a regular tetrahedron. Find the

lengths of the sides and the angles formed by adjacent faces.

(11) Find the least squares curve of the form y = ax2 + bx+ c that best fits the data points
(−2, 2), (−1, 1), (0, 0), (1, 1), (2, 2).

(12) Show that if V is finite dimensional and U is a subspace, then V = U ⊕ U⊥.

(13) Show that (U +W )⊥ = U⊥ ∩W⊥.

(14) Use the Gram-Schmidt process to find an orthonormal basis for the subspace of R3 spanned by 0
4
2

 and

 5
6
−7

.


