
Diagonalization and Jordan Canonical Form

Basic facts. Let V be a finite dimensional vector space and let T : V → V be a linear
transformation. Fix an ordered basis C for V and let A = C[T ]C be the matrix for T relative
to C.

(1) A is diagonalizable iff V has a basis consisting of e-vectors for T iff the minimal
polynomial of A has distinct roots.

(2) If B is a basis of e-vectors for T and S = C[I]B is the change of basis matrix from
B to C, then B[T ]B = S−1AS is diagonal and the diagonal entries of S−1AS are the
e-values of T in the correct order.

In practice, C is the standard basis. In this case, the columns of S are just the
e-vectors of T written in the standard basis. Hence the diagonalizing matrix is any
matrix whose columns are a basis of e-vectors of T .

(3) V has a basis of e-vectors for T iff V is a direct sum of the e-spaces for T :

V = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλk .
(4) Some matrices are not diagonalizable, for example any n × n “Jordan block” is

nondiagonalizable if n > 1:

Jn(λ) =



λ 1 0 · · · 0 0 0

0 λ 1 0 0 0

0 0 λ
. . . 0 0 0

...
. . .

. . .
...

0 0 0 λ 1 0
0 0 0 0 λ 1

0 0 0 · · · 0 0 λ


(5) Any matrix A can be “almost diagonalized”, if the scalar field is the complex num-

bers: there is always a matrix S whose columns are “generalized” eigenvectors of A
arranged in eigenchains, such that S−1AS = J is block diagonal with each block a
Jordan block.

Any matrix that is block diagonal with each block a Jordan block is said to be in
Jordan Canonical Form (JCF).

(6) v is a “generalized e-vector” for e-value λ if it is nonzero and (A − λI)kv = 0 for
some k. (When k = 1, v is a genuine e-vector.) We will not discuss how to find
the matrix S that puts A into Jordan form, because the computations are very
complicated, except to say that its columns are generalized e-vectors selected and
ordered in a special way. Nevertheless it is not too hard to identify the Jordan form
of A. Namely, the Jordan form of A is completely determined by the nullities of the
matrices (A− λI)k as λ ranges over e-values of A and k ranges from 1 to n.
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Examples.

(A) Find the JCF of the 9× 9-matrix A whose only e-value is 0 and which satisfies
the conditions nullity(A) = 4, nullity(A2) = 7, nullity(A3) = 8, nullity(A4) = 9.

Solution: Up to a permutation of Jordan blocks, there is only one matrix in
JCF that has the same e-values (e-value λ = 0 with multiplicity 9) and the
same nullities of the powers (A − λI)k. Namely, the fact that 9 × 9-matrix A
has only the e-value 0 implies that the JCF of A has all 9 entries on its diagonal
equal to 0. Also, nullity(A − 0I) = 4 implies that there are 4 Jordan blocks.
Each block of size greater than 1 contributes an increase in nullity between
(A− λI) and (A− λI)2. This increase is 7− 4 = 3, so 3 of the 4 Jordan blocks
must have size > 1. Continuing this reasoning leads to the conclusion that the
JCF of A is 

J4(0) 0 0 0
0 J2(0) 0 0
0 0 J2(0) 0
0 0 0 J1(0)


(B) Find the JCF of the 9× 9-matrix A whose only e-value is 5 and which satisfies

the conditions nullity(A − 5I) = 4, nullity(A − 5I)2 = 7, nullity(A − 5I)3 = 8,
nullity(A− 5I)4 = 9.

Solution: This is essentially the same as the previous problem:
J4(5) 0 0 0

0 J2(5) 0 0
0 0 J2(5) 0
0 0 0 J1(5)


(C) Find the JCF of the 16×16-matrix A whose only e-values are 1 and−2 and which

satisfies the conditions nullity(A−I) = 3, nullity(A−I)2 = 6, nullity(A−I)3 = 8,
nullity(A − I)4 = 10, nullity(A − I)5 = 10, nullity(A + 2I) = 2, nullity(A +
2I)2 = 3, nullity(A + 2I)3 = 4, nullity(A + 2I)4 = 5, nullity(A + 2I)5 = 6,
nullity(A+ 2I)6 = 6.

?


