
MATH 6250: Theory of Rings
Homework 4

C. Bridges, K. Havasi

Ex. 6.13. (Passman) Assume char k = 2. Let A be an abelian 2′-group and let G be the
semidirect product of A and a cyclic group 〈x〉 of order 2, where x acts on A by a 7→ a−1.
(1) If |A| < ∞, show that rad kG = k ·∑g∈G g, and (rad kG)2 = 0.
(2) If A is infinite, show that kG has no nonzero nil ideals.

Ex. 6.14. (Wallace) Assume char k = 2, and let G = A · 〈x〉 as in Exercise 13, where A
is the infinite cyclic group 〈y〉. (G is the infinite dihedral group.) Show that R = kG is
J-semisimple (even though G has an element of order 2).

Solution 6.13.
We notice first that kA has no nonzero nilpotent elements: it follows from Proposition

6.13 or Passman’s Theorem (6.15) that kA has no nonzero nil ideals. Then, as kA is commu-
tative, any nilpotent element would generate a nil ideal, therefore the only nilpotent element
in kA is zero.

Any element in kG can be expressed in the form α+βx, α, β ∈ kA. For α =
∑

a∈A αaa ∈
kA, let α∗ =

∑
αaa

−1; then xα = α∗x. Let I be any nil ideal in kG and α + βx ∈ I. Then
(α + βx)(α∗ + xβ∗) = αα∗ + αxβ∗ + βxα∗ + βxxβ∗ = αα∗ + αβx + βαx + ββ∗ = αα∗ + ββ∗,
using that α and β commute and chark = 2. As αα∗+ββ∗ is in the ideal I it is nilpotent. As
it is also in kA, it has to be zero by our previous observation. As char k = 2, αα∗ + ββ∗ = 0
means αα∗ = ββ∗. Next we show that (α + βx)m = (α + α∗)m−1(α + βx). To see this it is
enough to prove that (α + βx)(α + βx) = (α + α∗)(α + βx):

(α + βx)(α + βx) = αα + αβx + βxα + βxβx = αα + αβx + βα∗x + ββ∗ =

= αα + αβx + α∗βx + α∗α = (α + α∗)(α + βx).

Now, as α + βx is nilpotent, (α + α∗)k(α + βx) = 0 for some integer k. But this is only
possible if α + α∗ = 0: suppose that (α + α∗)k(α + βx) = 0. Then (α + α∗)kα = 0 and also
((α +α∗)kα)∗ = (α +α∗)kα∗ = 0, thus (α +α∗)k+1 = 0. As the only nilpotent element of kA
is zero, we have that α+α∗ = 0 and thus α = α∗. If α+βx ∈ I then (α+βx)x = αx+β ∈ I
and so β = β∗.

As α = α∗, we can write α = c · 1+
∑

cai
(ai + a−1

i ), using that A is a 2′-group and so the
only element in A whose inverse is itself is the identity. Because I is an ideal, a−1

i (α+βx) ∈ I,
and so a−1

i α = c · a−1
i +

∑
cai

(1 + a−2
i ) = (a−1

i α)∗, and in a−1
i α the coefficient of a−1

i and
ai must be the same (c), which means that in α the coefficient of a2

i must also be c. This
means that in α all the group elements of A that are squares must have the same coefficient
as the identity element. Elements of A with finite order are squares, because A is a 2′-group,
and so if the order of a ∈ A is 2k + 1, then a is the square of ak+1. Thus we proved that



if α + βx ∈ I, where I is a nil ideal, then in α all the elements of A that are squares (in
particular elements of finite order) have the same coefficient as the identity element and the
same statement is true for β.

Now, let’s assume first that A is infinite. If A has an element of infinite order, then we
have infinitely many squares in A, taking the even powers of the element of infinite order.
On the other hand if all the elements of A have finite order, then again we have infinitely
many squares in A, because all elements of finite order are squares. In any case we have
infinitely many squares in A. Now let I be a nil ideal in kG and suppose that it contains a
nonzero element α + βx 6= 0, thus either α 6= 0 or β 6= 0. If for example α is nonzero, then
by multiplication we can have that the coefficient of the identity in aα is nonzero for some
a ∈ A. Then a(α +βx) ∈ I and by our previous observations in aα infinitely many elements
of A should have nonzero coefficient, because the coefficient of the identity is nonzero and
there are infinitely many squares in A whose coefficients must be the same as the identity’s
coefficient. This is not possible and this proves part (2) of the statement.

To prove part (1), assume that A is finite and let J = k·∑g∈G g = k·(g1+g2+· · ·+gn). As
multiplication by any gi ∈ G permutes the elements of G, we have that gi

∑
g∈G g =

∑
g∈G g.

Thus (
∑

g∈G g)2 = (
∑

g∈G g)(
∑

g∈G g) = g1(
∑

g∈G g) + · · ·+ gn(
∑

g∈G g) = (
∑

g∈G g) + · · ·+
(
∑

g∈G g) = n(
∑

g∈G g) = 0, as n = 2 · |A| and char k = 2. This means that J2 = 0 and
J ⊆ rad kG. To prove that rad kG = J , assume that α + βx ∈ rad kG, but α + βx /∈ J .
As G is finite, kG is a finite dimensional k vector space, so it is artinian as a ring, which
means that the Jacobson radical is nilpotent and thus nil. Thus α + βx ∈ rad kG, a nil
ideal, and by what we proved earlier, all elements in α must have the same coefficients and
the same holds for β, so α = r

∑
a∈A a and β = s

∑
a∈A a for some r, s ∈ k. On the other

hand by our assumption α + βx /∈ J , so α 6= β. As by the definition of J we have that
β + βx ∈ J ⊆ rad kG, we have that (α + βx)− (β + βx) = α− β ∈ rad kG. But this is not
possible, because kA does not have any nonzero nilpotent elements. Thus part (1) is proved.

Solution 6.14.
Let Hi = 〈y3i〉 (1 ≤ i < ∞). Then Hi C G, and Gi = G/Hi is the dihedral group of order

2 · 3i, because a presentation of G is 〈x, y | x2 = 1, yx = xy−1〉, and factoring by Hi just adds
y3i

= 1 to the relations and the presentation becomes that of the finite dihedral group of
order 2 · 3i. Now we can define the ring homomorphism ϕ : kG → ∏∞

i=1 kGi, sending
∑

αgg
to (

∑
αggH1,

∑
αggH2, . . .). This map is injective: let t =

∑
αgg 6= 0, where each g in the

sum has the form yj or yjx. As there are only finitely many group elements in t with nonzero
coefficients, the values of j has a maximum in t, and we can choose i such that 3i is greater
than the maximum of the j values. Then the ith component of ϕ(t) is different from zero
and thus ϕ is injective.

Now let s, t ∈ rad kG. Then because of Lemma 4.1 and the fact that each component ϕi

of the map ϕ is surjective, we have that ϕi(s), ϕi(t) ∈ rad kGi. From part (1) of Exercise 13
we know that (rad kGi)

2 = 0, thus ϕi(s)ϕi(t) = 0 for all i. But then ϕ(s)ϕ(t) = ϕ(st) = 0
and because of the injectivity of ϕ, st = 0 and (rad kG)2 = 0. From part (2) of Exercise 13
we know that kG has no nonzero nil ideals, thus rad kG = 0 and kG is J-semisimple.


