
Problem 2

Homework 4

C. Blakestad, M. Hartman

Let G be a group with identity e, K a field, and σ : G → Aut(K) a homomorphism.
Discover and prove conditions on G,F and σ that are necessary and sufficient for the skew
group ring K[G;σ] to be semisimple.

The skew group ring K[G;σ] consists of formal sums
∑
aigi with ai ∈ K and gi ∈ G,

where elements of K commute with elements of G under the twist σ, that is ag · bh =
aσ(g)(b) · gh.

Proposition. If G is finite, H = ker(σ) and |H| is a unit in K, then K[G;σ] is semisimple.

Proof. Let V be a left K[G;σ]-module and W an left K[G;σ]-submodule. Acting by
elements of the form a · e on elements of V , we have that V is a K vector space and W
a K subspace, so V = W ⊕W ′ as K-vector spaces, for some K vector space W ′. Hence
there is a K-linear map f : V →W with f |W the identity on W (projection onto W ).

We will use f to define a new function from V to W which is also the identity on W ,
but which is a K[G;σ]-module homomorphism. Define za : V → V by

za(v) =
∑
g∈G

ga · f(g−1v)

where a is an element of K. Note this sum is well-defined because G is finite. If w ∈ W ,
then g−1w ∈W , hence is fixed by f , so

gaf(g−1w) = σ(g)(a)gf(g−1w) = σ(g)(a)gg−1w = σ(g)(a)w,

hence

za(w) =
∑
g∈G

σ(g)(a)w =

∑
g∈G

σ(g)(a)

w =

|H|∑
g∈T

σ(g)(a)

w,

where T is a subset of G which contains exactly one member from each coset of G/H. The
last equality holds because σ sends all members of the coset gH to the same automorphism
of K. Since the image A of σ is precisely G/H, the image of each coset is a distinct member
of A and each member of A arises in such a fashion. Hence∑

g∈T
σ(g)(a) =

∑
ḡ∈G/H

σ̄(ḡ)(a)



where ḡ is the image of g in G/H under the quotient map and σ̄ is the map induced by σ
from G/H to the automorphisms of K. The right hand sum is precisely the trace of a from
K down to the fixed field F of the action of A. Hence combining the last two equation
lines, we have za(w) =

(
|H|TrKF (a)

)
w. Thus if there is an element b of K with trace |H|−1,

we will have zb be the identity on W .
It suffices to know that TrKF : K → F is surjective since any automorphism of K must

fix all multiples of 1, including |H|, hence it must also fix |H|−1, so |H|−1 is an element
of F . Since TrKF is F -linear, it is enough for the trace to not be the zero map. But by
Dedekind’s Theorem on linear independence of characters, the trace map Tr : K → F is
never the zero map for finite Galois extensions K/F .

Defining z as zb from above, we have that z acts as the identity on W . On the other
hand, since f maps V to W and G fixes W , for any v ∈ V , we have z(v) ∈W . It remains
to show that z is a K[G;σ]-module homomorphism. Since the action of G on V is Z-linear
as is f , then z is also Z-linear. Thus it suffices to show that the action of z commutes with
multiplication by an element of the form a · g for a ∈ K and h ∈ G. For v ∈ V , we have:

z(ahv) =
∑
g∈G

gbf(g−1ahv)

=
∑
g∈G

gbf(σ(g−1)(a)g−1hv)

=
∑
g∈G

gσ(g−1)(a)bf(g−1hv)

=
∑
g∈G

σ(g)(σ(g−1)(a))gbf(g−1hv)

=
∑
g∈G

σ−1(g−1)(σ(g−1)(a))gbf(g−1hv)

=
∑
g∈G

agbf(g−1hv)

= a
∑
g∈G

gbf(g−1hv).

Setting g′ = h−1g, we have hg′ = hh−1g = g and g′−1 = g−1h with the g′ still running
over all of G, so



z(ahv) = a
∑
g∈G

gbf(g−1hv)

= a
∑
g′∈G

hg′bf(g′−1v)

= ah
∑
g′∈G

g′bf(g′−1v)

= ah · z(v).

Hence z : V →W is a k[G;σ]-module homomorphism which is the identity on W hence
V = W ⊕ker(z). Thus any submodule of an arbitrary module is complemented, so K[G;σ]
is semisimple.

Lemma. If K[G;σ] is semisimple then G is finite.

Proof. We will show independently that both H and G/H are finite.
To show H is finite, we note that σ can be extended to a map ε : K[G;σ]→ K[G/H; σ̄]

which is the identity on K and acts as σ on G, where σ̄ is the induced map of σ on G/H
into the automorphism group of K. Let I be the ideal of K[G;σ] sent to zero under ε.
Since K[G;σ] is semisimple, there is an ideal J such that K[G;σ] = I ⊕ J . Hence there
are nonzero idempotents e and f such that I = K[G;σ]e, J = K[G;σ]f , e + f = 1, and
ef = 0. by exercise 1.7 in Lam. For any α in H, we have ε(α − 1) = 0, so α − 1 is in I.
Then I · f = K[G;σ]e · f = 0 so in particular (α− 1)f = 0, hence αf = f for any α ∈ H.
We have f =

∑
β∈G aββ for some aβ ∈ K, all but finitely many zero. If γ ∈ G appears in

f with a nonzero coefficient, then

f = αf = α
∑
β∈G

aββ =
∑
β∈G

σ(α)(aβ)αβ

and σ(α)(aγ) 6= 0, so the coefficient of αγ is nonzero, for all α ∈ H. If H were infinite,
then f would not be an element of K[G;σ], so H must be finite.

Since G/H is precisely the image of σ, it is the Galois group of K/F . Hence if G/H
were infinite, then K/F would be an infinite degree extension and K would be an infinite
dimensional vector space over F . We will show that when K[G;σ] is semisimple, this
cannot be the case.

We will show the multiplication of K[G;σ] is defined precisely in such a way that K
can be made into a left K[G;σ]-module under the action∑

g∈G
agg

 · k =
∑
g∈G

agσ(g)(k).



This multiplication is clearly additive in K[G;σ] and K, and 1 in K[G;σ] acts as the
identity on K. It remains only to check associativity:∑

g∈G
agg

 ·(∑
h∈G

bhh · k

)
=

∑
g∈G

agg

 ·∑
h∈G

bhσ(h)(k)

=
∑
g∈G

agσ(g)

(∑
h∈G

bhσ(h)(k)

)
=
∑
g∈G

∑
h∈G

agσ(g) (bhσ(h)(k))

=
∑
g∈G

∑
h∈G

agσ(g)(bh)σ(g)(σ(h)(k))

=
∑
g∈G

∑
h∈G

agσ(g)(bh)σ(gh)(k)

=

∑
g∈G

∑
h∈G

agσ(g)(bh)gh

 · k
=

∑
g∈G

∑
h∈G

aggbhh

 · k
=

∑
g∈G

agg
∑
h∈G

bhh

 · k
hence this multiplication does make K into a left K[G;σ]-module.

Restricting the scalars to just K, this action is already transitive, so K must be a
simple K[G;σ]-module. Hence the endomorphism ring E must be a division ring. Since
any element of E is K[G;σ]-linear and, in particular, K-linear, elements of E are uniquely
determined by where they send 1 and can be viewed as right multiplication by where 1 is
sent, ie if ea is the endomorphism sending 1 to a, then ea(k) = ka for all k ∈ K. The ea
which are allowable are precisely those which associate with multiplication by elements of
K[G;σ]. Certainly all elements of F will be allowed because∑
g∈G

agg

 · kf =
∑
g∈G

agσ(g)(fk) = f
∑
g∈G

agσ(g)(k) = f

∑
g∈G

agg · k

 =

∑
g∈G

agg · k

 f.

It remains to show that these are the only allowable elements of K.
If ef is an left K[G;σ]-module endomorphism of K and g an element of G, then ef (g ·

1) = g · ef (1) hence (g ·1)f = g · (1f). For the left hand side, we have (g ·1)f = σ(g)(1)f =



1f = f , and for the right hand side we have g · (1f) = g · f = σ(g)(f), hence σ(g)(f) = f
for all g in G, so f must be in the fixed field of K under G, which is exactly F . Thus E
is right multiplication by elements of F . Certainly K is a vector space over F , but since
K[G;σ] is semisimple and EndK[G;σ](K) = F , it must be that K is a finite dimensional
vector space over F , hence [K : F ] is finite.

Proposition. If K[G;σ] is semisimple, then |H| is a unit in K.

Proof. It suffices to show that any prime dividing |H| is a unit in K. Let p be a prime
dividing |H|. By Cauchy’s Theorem, there is an element g in H of order p. Since K[G;σ]
is semisimiple, by Corollary 4.24 in Lam, K[G;σ] is von Neumann regular, so there is an
element α ∈ K[G;σ] such that 1−g = (1−g)α(1−g), and hence [1− (1−g)α] · (1−g) = 0.
By the following lemma, we have [1 − (1 − g)α] ∈ K[G;σ] · (1 + h + · · · + hp−1), so
[1 − (1 − g)α] = β · (1 + g + · · · + gp−1), for some β ∈ K[G;σ]. Applying ε, we have
1 = ε(β) · p, hence p is a unit in K[G/H; σ̄] so cannot be zero in K.

Lemma. Let r ∈ K[G;σ], h ∈ H = ker(σ) an element of order p such that r · (1− h) = 0,
then r ∈ K[G;σ] · (1 + h+ · · ·+ hp−1)

Proof. We will induct on the number n of nonzero terms in r =
∑

g∈G rgg, where the
rg ∈ K. If n = 0, then r = 0 and the result is trivial. If n ≥ 0, then let τ ∈ G be an
element with nonzero coefficient in r, then since r = r · h by asumption, τ · ha must occur
with the same coefficent as τ in r for each integer a. Hence

r = rτ (τ + τh+ · · ·+ τhp−1) + r′ = rττ(1 + h+ · · ·+ hp−1) + r′,

where r′ ∈ K[G;σ] with nonzero coefficents only on the elements of G which r had nonzero
coefficents, but also with zero coefficients for τ, τh, . . . , τhp−1. Since r′ = r − rττ(1 + h +
· · ·+ hp−1), we have

r′ · (1− h) = (r − rττ(1 + h+ · · ·+ hp−1))(1− h)

= r · (1− h) + rττ(1 + h+ · · ·+ hp−1) · (1− h)

= 0 + rττ(1 + h+ · · ·+ hp−1)− rττ(1 + h+ · · ·+ hp−1)h

= rττ(1 + h+ · · ·+ hp−1)− rττ(1 + h+ · · ·+ hp−1)

= 0

since (1+h+· · ·+hp−1)h = (1+h+· · ·+hp−1), as h is of order p. By the inductive hypothesis,
r′ ∈ K[G;σ] · (1+h+ · · ·+hp−1) and rττ(1+h+ · · ·+hp−1) ∈ K[G;σ] · (1+h+ · · ·+hp−1),
hence so is r.


