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S. Andrews, K. Havasi

Let R be a ring possibly without an identity. In R, define a ◦ b = a + b − ab. It can be
shown that this binary operation is associative, and that (R, ◦) is a monoid with zero as
the identity element. An element a ∈ R is called left (resp. right) quasi-regular if a has
a left (resp. right) inverse in the monoid (R, ◦) with identity. If a is both left and right
quasi-regular, we say that a is quasi-regular. A set I ⊆ R is called quasi-regular (resp. left or
right quasi-regular) if every element of I is quasi-regular (resp. left or right quasi-regular).

Ex. 4.4 Define the Jacobson radical of R by

rad R = {a ∈ R : Ra is left quasi-regular}.

Show that rad R is a quasi-regular ideal which contains every quasi-regular left (resp. right)
ideal of R. (In particular, rad R contains every nil left or right ideal of R.) Show that, if R
has an identity, the definition of rad R here agrees with the one given in the introduction to
this section.

Solution.

Claim 1. If R has an identity 1, the map ϕ : (R, ◦) → (R,×) sending a to 1 − a is a
monoid isomorphism. In this case, an element a is left (right) quasi-regular if and only if
1− a has a left (right) inverse with respect to ring multiplication.

Proof. The map is obviously a bijection with inverse a 7→ 1 − a. To see that it is a
homomorphism: ϕ(a ◦ b) = ϕ(a + b− ab) = 1− a− b + ab = (1− a)(1− b) = ϕ(a)ϕ(b). The
second part of the claim is trivial.

We can use this claim and the fact that in analysis we can write the inverse of 1 − a as
an infinite geometric series to find quasi-inverses to elements in (R, ◦), even when there is
no identity in R.

Claim 2. If ab is left quasi-regular, then so is ba.
Proof. Let c be the left quasi-inverse of ab, i.e. c ◦ (ab) = 0. Then using the previous

claim we can find the left quasi-inverse of ba to be bca−ba. We have to check that it is indeed
a left quasi-inverse: (bca− ba) ◦ (ba) = bca− ba + ba− bcaba + baba = bca− bcaba + baba =
b(c− cab + ab)a = b(c ◦ (ab))a = 0.

Claim 3. Any nilpotent element is quasi-regular.



Proof. Let a be a nilpotent element, so a2k
= 0 for some positive integer k. As we

have a2k
= −a2k−1

+ a2k−1
+ a2k−1

a2k−1
= (−a2k−1

) ◦ a2k−1
, we can write recursively that

0 = a2k
= (−a2k−1

) ◦ ((−a2k−2
) ◦ · · · ◦ ((−a) ◦ a) · · · ). Because the operation ◦ is associa-

tive, we found a left quasi-inverse to a. We can find a right quasi-inverse by a similar method.

Claim 4. If a left ideal is left quasi-regular, then it is quasi-regular.
Proof. Let I ⊂ R be a left quasi-regular left ideal, and a ∈ I. Then a is left quasi-regular,

so c◦a = c+a−ca = 0 for some c ∈ R. But then c = ca−a ∈ I, so c is also left quasi-regular
and d◦ c = 0, for some d ∈ R. As d = d◦ c◦a = a, we have that a◦ c = 0, and thus a is right
quasi-regular and also quasi-regular. As a was an arbitrary element of I, I is quasi-regular.

Proof of 4.4 First we prove that rad R is an ideal. Let a, b ∈ rad R. To prove that
a + b ∈ rad R, we need to show that for any r ∈ R, r(a + b) = ra + rb is left quasi-regular.
Let c be the left quasi-inverse of ra which exists because a ∈ rad R. Then c ◦ (ra + rb) =
c + ra + rb− cra− crb = rb− crb = (r− cr)b. The element (r− cr)b has a left quasi-inverse
d, because b ∈ rad R, thus d ◦ c is a left quasi-inverse of ra + rb and a + b ∈ rad R. Now
let s ∈ R be arbitrary, we need to show that sa, as ∈ rad R, i.e. Rsa and Ras are left
quasi-regular. Rsa is left quasi-regular, because Ra is left quasi-regular. Any element ras
is left quasi-regular using Claim 2 and the fact that sra is left quasi-regular. So Ras is also
left quasi-regular and rad R is an ideal.

Next we prove that radR is quasi-regular. As radR is an ideal, thus a left ideal, because
of Claim 4, we only need to prove that rad R is left quasi-regular. Let a ∈ rad R, thus a2

has a left quasi-inverse c. Then c + ca − a is a left quasi-inverse to a: (c + ca − a) ◦ a =
c + ca− a + a− ca− ca2 + a2 = c + a2 − ca2 = c ◦ (a2) = 0. Thus rad R is quasi-regular.

Next we prove that if I is a quasi-regular left ideal then I ⊂ rad R. Let a ∈ I. Then
Ra ⊂ I as I is a left ideal, and so Ra is quasi-regular. Thus a ∈ rad R and I ⊂ rad R.

Now let I be a quasi-regular right ideal. We need to prove that I ⊂ rad R. Let a ∈ I,
then aR ⊂ I, so for any r ∈ R, ar is quasi-regular. But then using Claim 2 we have that
ra is left quasi-regular, so a ∈ rad R and I ⊂ rad R. Thus indeed rad R contains every
quasi-regular left or right ideal of R.

Claim 3 shows that a nil left or right ideal is quasi-regular, thus indeed rad R contains
every nil left or right ideal of R.

It remains to show that if R has identity, then the two definitions of radR are equivalent.
Let J be the intersection of all maximal left ideals of R. Then by Lemma 4.1, a ∈ J is
equivalent to the statement that 1− ra is left-invertible (with respect to the multiplication
of R) for any r ∈ R. By Claim 1 this is equivalent to ra being left quasi-regular for any
r ∈ R. But according to the definition of rad R this is equivalent to a being an element of
rad R. Thus the two definitions of the Jacobson radical are indeed equivalent.


