MATH 6250: Theory of Rings
Homework 1
M. Hartman, K. Havasi

4. (The matrix power functor.) Let R be a ring, ¢ : M — N be a homomorphism of
R-modules, and n be a positive integer.
(i) Show that M" is an M, (R)-module, where the action of the ring on the module is that
of multiplication of an n x n matrix by a column of length n.
(ii) Show that the map
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et M — N": | | e :
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of ¢ acting coordinatewise is an M, (R)-module homomorphism.
(iii) Show that M +— M", ¢ — ¢™ is a functor from rMod to u,r)Mod.

Solution.

(i) M,(R) is a ring with identity with matrix multiplication and addition, and M" is
an abelian group with vector addition. Let r,s € M,(R) and z,y € M". Then
r(z+y) =rx+ry and (r+ s)x = rx + sz, because matrix multiplication and addition
is distributive (considering the x,y vectors to be matrices). Also, (rs)z = r(sz),
because matrix multiplication is associative, furthermore Iz = x, where I € M,(R) is
the identity matrix. Thus M™ is an M, (R)-module, as all the module axioms are true.
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Now let
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This proves that ¢" is an M, (R)-module homomorphism.

(iii) To prove that M — M™, ¢ +— ¢" is a functor from rMod to y;,r)Mod, there are four
conditions that we have to check.

(1) Let ¢ : My — My, ¢ : My — M3 be homomorphisms of R-modules. We have to
check that (¢ o @)™ =™ o ™. Again let
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Thus (i 0 )" = 47 0 ™.
(2) We have to check that id}y; = idp=:
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(3) If F'is the functor and ¢ : M — N is a homomorphism, then F'(dom(p)) =
F(M) = M"=dom(¢") = dom(F(p)), and

(4) F(cod(p)) = F(N) = N" = cod(¢") = cod(F(p)).

Thus M +— M™, ¢ — " is a functor.



