ringslp3
C. Bridges, T. Gern

(One-sided ideals of Endp(V').) Let M be an R-module, and let S C M be a subset.
The annihilator of S is annS = {r € R|rS = {0}}.

Let V be a finite dimensional (left) D-vector space. The purpose of this exercise is
to determine the left and right ideals of R = Endp(V).

(i) Show that L = ann(U) is a left idea lof R for any subspace U < V.

Proof. We need to show that L is closed under elements of R acting on L on the left,
and that the group structure of R, (R, +), contains L as a subgroup. Suppose r € L,
let —r be the additive inverse of 7 in R. Then —rU = —1.7U = —1-{0} = {0}, hence
—r € L. Suppose 11,r2 € L. Then (r1 —ro)U = {(r1 —r2)u |u € U} = {riu—rqu |
u € U} = {0}. Now, for all a € R and r € L, (ar)U = a(rU) = a - {0} = {0}.
Hence L is a left ideal for any subspace U < V. a

(ii) Show that if L is a left ideal of R, then L = ann(U) for some subspace
U<V.

Proof. First we will show that if e, f € R and ker(f) Z ker(e), then thereisad € R
such that ker(de + f) is properly contained in ker(f). Let x € ker(f) \ ker(e) and
let w € V \ im(f). Such a w must exist otherwise f is surjective, so by the Rank
Nullity Theorem, ker(f) = 0. This means ker(f) C ker(e), a contradiction. Now,

extend v; = e(z) to a basis vy,...,v, of V. Define an endomorphsim d : V. — V
by
if 1 = 1;
d(v;) = w if1d ;
0 else.

Then (de + f)(z) = w # 0, but f(x) = 0. Furthermore, if (de + f)(y) = 0 then for
some b € D we have

—de(y) = f(y)
bw=f(y)
which means b = 0 since w ¢ im(f). Then y € ker(f), so ker(de + f) C ker(f).

Now we will show that L = ann(U) for some subspace U < V. Let L be a left
ideal. Since the dimension of the kernel of any element of L is an integer between
0 and dim(V'), there exists a minimal dimension of kernels of elements of L. Let f
be an element of L whose kernel has this dimension. Suppose there is some e in L
such that ker(f) & ker(e). Then by the above we see that there is some d in R such
that ker(de + f) C ker(f). Since L is an ideal and f and e are in L, we see that
de + f € L which contradicts the minimality of the dimension of ker(f). Therefore
for all e € L, ker(f) C ker(e). It follows that L C ann(ker(f)). Clearly R- f C L,
so we have that

R- f C L C ann(ker(f)).
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If we show that ann(ker(f)) C R- f then we are done.
To see that this is true, first note that by the Rank-Nullity Theorem, for all h, f € L,

dim(ker(f)) + dim(Im(f)) = dim(V') = dim(ker(h)) + dim(Im(h)),

so dim(Im(h)) < dim(Im(f)) if h € ann(ker(f)).

Let h € ann(ker(f)), dim(Im(h)) = s < r = dim(Im(f)). Now let {xy41,...,2pn}
be a basis for ker(f). Extend this to a basis {zs41,...,2,} for ker(h). Then
extend this to a basis {x1,...,2,} for V. By writing each element of V" as a linear
sum of basis vectors, we see that the set of non-zero f(z;) span the image of f.
Also, we see that span{z; | f(xz;) = 0} is contained in ker(f). By the Rank-
Nullity Theorem we see that the set of non-zero f(x;) form a basis for Im(f) and
span{x; | f(x;) = 0} = ker(f). Similarly, the set of non-zero h(x;) form a basis for
Im(h) and span{x; | h(x;) = 0} = ker(h).

Now we have {f(z;) | [(s) # 0} = {f(z1),. .., f(w,)} and {h(z)) | h(z)) #
0} = {h(z1),...,h(zs)}. Let f(x;) =v; for i = 1...7 and extend this to a basis
{v1,...,v,} of V. Similarly, let h(x;) = w; for i = 1...s and extend this to a basis
{w1,...,wy} of V.

Now let r : V' — V be an endomorphsim defined as follows:

r(vi):{wi ifi=1...s;

0 else,
Since the v; form a basis for V', we see that r is well-defined and

T(f(mi))zr(vi)Z{wi ifi=1...s :{h(ﬂfi) ifi=1...s

= h(x;).
0 else (w:)

0 else

Therefore, for all h € ann(ker(f)), there exists an r € R such that h = rf for all
v € V. Hence ann(ker(f)) CR- f. O

(iii) Determine a similar correspondence between the right ideals of R and sub-
spaces of V.

Let U be a subspace of V. Define the set of all endomorphsims whose image is
in U to be Im(U) :={r € R|r(V) CU}. Im(U) is an additive subgroup since U
is a subspace: For all 11,72 € Im(U)

(r1 =) (V) ={ri(vy) — ra(va) | v1,v2 € V} C U,

so 1 —7rg € Im(U). Also, Im(U) is closed under multiplication on the right by
elements of R since for all r,s € R, (V) C r(s(V)). Therefore Im(U) is a right
ideal of R.

Claim: If I is a right ideal of R, then I = Im(U) for some U C V.

Proof. First we will show that for any e, f € R with Im(e) Z Im(f), there is a
d € R such that Im(f) C Im(ed + f). Let v € Im(e) \ Im(f). So for some w € V,
e(w) = v but clearly v ¢ Im(f). Let {v1,...,v} be a basis for ker(f), extend this
to a basis {v1,...,v,} of V. Define an endomorphism d: V — V by

ifi=1,...,1;
d(vi):{w if 4 R

0 else.



Now
ed(v;) ifi=1,...,1, v ifi=1,...,1,
ed+ f)(v;) = ed(v;) + f(v;) = =
( D) (i) + £ (i) {f(vz) else. {f(vi) else.
Suppose a € Im(f). Then there is some b € V such that f(b) = a. Writing b as a
linear combination of basis vectors v1, ..., v,, we have
a = f(b)

= f(z aivi)

n

= f(Y aw)

i=1+1
= (ed+ ) ) aw),
=141
and therefore Im(f) C Im(ed + f). It is clear from our definition of d that
v € Im(ed + f) \ Im(f), so Im(f) € Im(ed + f).

Since V is finite dimensional, there is a maximum dimension of images of el-
ements of I. Select an f € I such that the dimension of the image, U, of f is
maximal. Suppose there is some e € I such that Im(e) € Im(f). We have seen that
this contradicts the maximality of the dimension of f since ed + f € I because I is
a right ideal. Hence Im(e) C Im(f) for all e € I. Therefore I C Im(U).

Now let e € Im(U). Let {wj41,...,w,} be a basis for ker(e). Extend this
to a basis {w,...,w,} of V. For 1 < ¢ < j, e(w;) are linearly independent
and non-zero. By checking dimensions, we see that they form a basis of Im(f).
Since Im(e) € U = Im(f), there are vy,...,v; € V such that f(v;) = e(w;) for
i=1,...,j. Since these e(w;) are linearly independent, so are the v;. Extend the
v; to a basis of V, {vy1,...,v,}. Define an endomorphism r: V' — V as

v ifi=1,...,4;
r(wi)—{ J

0 else.

Now r is defined so that e(w;) = fr(w;) foralli = 1,...,n. Since e was arbitrary,
we have Im(U) C f - R. In total we have

frRCICIU)Cf R
Therefore I = Im(U). O

(iv) Can anything interesting be said about the case where V' is infinite dimen-
sional?

Let V = Span{v; | ¢ € N}. Then the proof in part (i) still applies to V, so
annihilators of subspaces of V are left ideals. Also, Im(U) will be a right ideal for
any subspace U of V.

An immediate obstacle in proving the converse in the infinite dimensional case is



that there may be no minimal dimension of kernels of elements of a left ideal, or
maximal dimension of images of elements of a right ideal. For example, let

I; ={e€ R|e(v;) =0 for all j >i},

I= U I.
ieN
Then if 1,79 € I, then for all a € R, ary € [ and r; —ro € I, so I is a left ideal.
But for any non zero subspace U C V', U contains a finite linear combination of the
v;, s0 not every element of I annihilates all of U. If U = {0}, then since I # R, I
is not the annihilator of U.
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If we speak only of left ideals with the property that they do have a minimal
dimension of kernels of its elements, or of right ideals that do have a maximal
dimension of images of its elements, then there also needs to be an adjustment to
the proof of the existence of the d found in the above proofs. For example, the proof
of the existence of d in (ii) was based on finding an element w not in the image of
f. This w may not exist if V' is infinite dimensional: Let V' = Span{v; | ¢ € N}.

Define f by
0 ifi=1;
flvi) = {

v;—1 else.

Then im(f) = V and ker(f) = Span(v1). The constructive proof of d in (ii) does
not translate to this f, a new method for finding this d would need to be found,
or possibly a new condition on which element would be have a kernel properly
contained in the kernel of f. For example, maybe given e and f such that ker(f) ¢
ker(e) there are a d and ¢ such that ker(de 4 cf) C ker(f).



