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(One-sided ideals of EndD(V ).) Let M be an R-module, and let S ⊆M be a subset.
The annihilator of S is annS = {r ∈ R | rS = {0}}.
Let V be a finite dimensional (left) D-vector space. The purpose of this exercise is
to determine the left and right ideals of R = EndD(V ).

(i) Show that L = ann(U) is a left idea lof R for any subspace U < V .

Proof. We need to show that L is closed under elements of R acting on L on the left,
and that the group structure of R, (R,+), contains L as a subgroup. Suppose r ∈ L,
let −r be the additive inverse of r in R. Then −rU = −1·rU = −1·{0} = {0}, hence
−r ∈ L. Suppose r1, r2 ∈ L. Then (r1− r2)U = {(r1− r2)u | u ∈ U} = {r1u− r2u |
u ∈ U} = {0}. Now, for all a ∈ R and r ∈ L, (ar)U = a(rU) = a · {0} = {0}.
Hence L is a left ideal for any subspace U < V . �

(ii) Show that if L is a left ideal of R, then L = ann(U) for some subspace
U < V .

Proof. First we will show that if e, f ∈ R and ker(f) 6⊆ ker(e), then there is a d ∈ R
such that ker(de + f) is properly contained in ker(f). Let x ∈ ker(f) \ ker(e) and
let w ∈ V \ im(f). Such a w must exist otherwise f is surjective, so by the Rank
Nullity Theorem, ker(f) = 0. This means ker(f) ⊆ ker(e), a contradiction. Now,
extend v1 = e(x) to a basis v1, . . . , vn of V . Define an endomorphsim d : V → V
by

d(vi) =

{
w if i = 1;

0 else.

Then (de+ f)(x) = w 6= 0, but f(x) = 0. Furthermore, if (de+ f)(y) = 0 then for
some b ∈ D we have

−de(y) = f(y)

b · w = f(y)

which means b = 0 since w 6∈ im(f). Then y ∈ ker(f), so ker(de+ f) ( ker(f).

Now we will show that L = ann(U) for some subspace U < V . Let L be a left
ideal. Since the dimension of the kernel of any element of L is an integer between
0 and dim(V ), there exists a minimal dimension of kernels of elements of L. Let f
be an element of L whose kernel has this dimension. Suppose there is some e in L
such that ker(f) 6⊆ ker(e). Then by the above we see that there is some d in R such
that ker(de + f) ( ker(f). Since L is an ideal and f and e are in L, we see that
de+ f ∈ L which contradicts the minimality of the dimension of ker(f). Therefore
for all e ∈ L, ker(f) ⊆ ker(e). It follows that L ⊆ ann(ker(f)). Clearly R · f ⊆ L,
so we have that

R · f ⊆ L ⊆ ann(ker(f)).
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If we show that ann(ker(f)) ⊆ R · f then we are done.
To see that this is true, first note that by the Rank-Nullity Theorem, for all h, f ∈ L,

dim(ker(f)) + dim(Im(f)) = dim(V ) = dim(ker(h)) + dim(Im(h)),

so dim(Im(h)) ≤ dim(Im(f)) if h ∈ ann(ker(f)).
Let h ∈ ann(ker(f)), dim(Im(h)) = s ≤ r = dim(Im(f)). Now let {xr+1, . . . , xn}
be a basis for ker(f). Extend this to a basis {xs+1, . . . , xn} for ker(h). Then
extend this to a basis {x1, . . . , xn} for V . By writing each element of V as a linear
sum of basis vectors, we see that the set of non-zero f(xi) span the image of f .
Also, we see that span{xi | f(xi) = 0} is contained in ker(f). By the Rank-
Nullity Theorem we see that the set of non-zero f(xi) form a basis for Im(f) and
span{xi | f(xi) = 0} = ker(f). Similarly, the set of non-zero h(xi) form a basis for
Im(h) and span{xi | h(xi) = 0} = ker(h).
Now we have {f(xi) | f(xi) 6= 0} = {f(x1), . . . , f(xr)} and {h(xi) | h(xi) 6=
0} = {h(x1), . . . , h(xs)}. Let f(xi) = vi for i = 1 . . . r and extend this to a basis
{v1, . . . , vn} of V . Similarly, let h(xi) = wi for i = 1 . . . s and extend this to a basis
{w1, . . . , wn} of V .
Now let r : V → V be an endomorphsim defined as follows:

r(vi) =

{
wi if i = 1 . . . s;

0 else,

Since the vi form a basis for V , we see that r is well-defined and

r(f(xi)) = r(vi) =

{
wi if i = 1 . . . s

0 else
=

{
h(xi) if i = 1 . . . s

0 else
= h(xi).

Therefore, for all h ∈ ann(ker(f)), there exists an r ∈ R such that h = rf for all
v ∈ V . Hence ann(ker(f)) ⊆ R · f . �

(iii) Determine a similar correspondence between the right ideals of R and sub-
spaces of V .

Let U be a subspace of V . Define the set of all endomorphsims whose image is
in U to be Im(U) := {r ∈ R | r(V ) ⊆ U}. Im(U) is an additive subgroup since U
is a subspace: For all r1, r2 ∈ Im(U)

(r1 − r2)(V ) = {r1(v1)− r2(v2) | v1, v2 ∈ V } ⊆ U,

so r1 − r2 ∈ Im(U). Also, Im(U) is closed under multiplication on the right by
elements of R since for all r, s ∈ R, r(V ) ⊆ r(s(V )). Therefore Im(U) is a right
ideal of R.

Claim: If I is a right ideal of R, then I = Im(U) for some U ⊂ V .

Proof. First we will show that for any e, f ∈ R with Im(e) 6⊆ Im(f), there is a
d ∈ R such that Im(f) ( Im(ed + f). Let v ∈ Im(e) \ Im(f). So for some w ∈ V ,
e(w) = v but clearly v /∈ Im(f). Let {v1, . . . , vl} be a basis for ker(f), extend this
to a basis {v1, . . . , vn} of V . Define an endomorphism d : V → V by

d(vi) =

{
w if i = 1, . . . , l;

0 else.
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Now

(ed+ f)(vi) = ed(vi) + f(vi) =

{
ed(vi) if i = 1, . . . , l,

f(vi) else.
=

{
v if i = 1, . . . , l,

f(vi) else.

Suppose a ∈ Im(f). Then there is some b ∈ V such that f(b) = a. Writing b as a
linear combination of basis vectors v1, . . . , vn, we have

a = f(b)

= f(

n∑
i=1

αivi)

= f(

n∑
i=l+1

αivi)

= (ed+ f)(

n∑
i=l+1

αivi),

and therefore Im(f) ⊆ Im(ed + f). It is clear from our definition of d that
v ∈ Im(ed+ f) \ Im(f), so Im(f) ( Im(ed+ f).

Since V is finite dimensional, there is a maximum dimension of images of el-
ements of I. Select an f ∈ I such that the dimension of the image, U , of f is
maximal. Suppose there is some e ∈ I such that Im(e) 6⊆ Im(f). We have seen that
this contradicts the maximality of the dimension of f since ed+ f ∈ I because I is
a right ideal. Hence Im(e) ⊆ Im(f) for all e ∈ I. Therefore I ⊆ Im(U).

Now let e ∈ Im(U). Let {wj+1, . . . , wn} be a basis for ker(e). Extend this
to a basis {w1, . . . , wn} of V . For 1 ≤ i ≤ j, e(wi) are linearly independent
and non-zero. By checking dimensions, we see that they form a basis of Im(f).
Since Im(e) ⊆ U = Im(f), there are v1, . . . , vj ∈ V such that f(vi) = e(wi) for
i = 1, . . . , j. Since these e(wi) are linearly independent, so are the vi. Extend the
vi to a basis of V , {v1, . . . , vn}. Define an endomorphism r : V → V as

r(wi) =

{
vi if i = 1, . . . , j;

0 else.

Now r is defined so that e(wi) = fr(wi) for all i = 1, . . . , n. Since e was arbitrary,
we have Im(U) ⊆ f ·R. In total we have

f ·R ⊆ I ⊆ Im(U) ⊆ f ·R

Therefore I = Im(U). �

(iv) Can anything interesting be said about the case where V is infinite dimen-
sional?

Let V = Span{vi | i ∈ N}. Then the proof in part (i) still applies to V , so
annihilators of subspaces of V are left ideals. Also, Im(U) will be a right ideal for
any subspace U of V .
An immediate obstacle in proving the converse in the infinite dimensional case is
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that there may be no minimal dimension of kernels of elements of a left ideal, or
maximal dimension of images of elements of a right ideal. For example, let

Ii = {e ∈ R | e(vj) = 0 for all j > i},
and

I =
⋃
i∈N

Ii.

Then if r1, r2 ∈ I, then for all a ∈ R, ar1 ∈ I and r1 − r2 ∈ I, so I is a left ideal.
But for any non zero subspace U ⊆ V , U contains a finite linear combination of the
vi, so not every element of I annihilates all of U . If U = {0}, then since I 6= R, I
is not the annihilator of U .

If we speak only of left ideals with the property that they do have a minimal
dimension of kernels of its elements, or of right ideals that do have a maximal
dimension of images of its elements, then there also needs to be an adjustment to
the proof of the existence of the d found in the above proofs. For example, the proof
of the existence of d in (ii) was based on finding an element w not in the image of
f . This w may not exist if V is infinite dimensional: Let V = Span{vi | i ∈ N}.
Define f by

f(vi) =

{
0 if i = 1;

vi−1 else.

Then im(f) = V and ker(f) = Span(v1). The constructive proof of d in (ii) does
not translate to this f , a new method for finding this d would need to be found,
or possibly a new condition on which element would be have a kernel properly
contained in the kernel of f . For example, maybe given e and f such that ker(f) 6⊂
ker(e) there are a d and c such that ker(de+ cf) ( ker(f).


