
Theory of Rings Homework

M. Hartman, K. Havasi

Rings1p1.15(a)(b): Let A = C[x;σ], where σ denotes complex conjugation.

a) Show that Z(A) = R[x2].

b) Show that A/A · (x2 + 1) is isomorphic to H, the division ring of the real quaterions.

Proof:
a) Claim: R[x2] ⊆ Z(A). Let a(x) =

∑n
j=0(aj + ibj)x

j ∈ A. Let c(x) =
∑m

k=0 c2kx
2k ∈ R[x2]. Then

a(x)c(x) =
∑n+2m

j+2k=0(aj + ibj)σ
j(c2k)xj+2k =

∑n+2m
j+2k=0(aj + ibj)c2kx

j+2k =
∑n+2m

j+2k=0 c2k(aj + ibj)x
2k+j =∑n+2m

j+2k=0 c2kσ
2k(aj + ibj)x

2k+j = (
∑2m

2k=0 c2kx
2k)(

∑m
j=0(aj + ibj)x

j) = c(x)a(x).

Z(A) ⊆ R[x2]. Let a(x) = anx
n + an−1x

n−1 + · · · + ajx
j + · · · + a1x + a0 be a polynomial in A such

that aj has a non-zero complex part (i.e. aj = b + ic where c 6= 0). Then xa(x) = (xanx
n + xan−1x

n−1 +
· · ·+ xajx

j + · · ·+ xa1x + xa0 = σ(an)xn+1 + σ(an−1)xn + · · ·+ σ(aj)x
j+1 + · · ·+ σ(a1)x2 + σ(a0)x. And

a(x)x = anx
n+1 + an−1x

n + · · · + ajx
j+1 + · · · + a1x

2 + a0x. If these two polynomials are equal, their
xj+1th coefficients must be equal . But if we compare the coefficient of xj+1, we find the two terms to not
be equal because the complex part of aj 6= 0. Thus, any polynomial with at least one non-real coefficient
will not be central. To show that any polynomial with an odd degreed term will not be in the center, let
b(x) = bnx

n + · · ·+ bkx
k + · · ·+ b2x

2 + b0 be a polynomial where the kth term is odd, and let a+ ic ∈ C such
that c 6= 0. Then b(x)(a+ ic) = bnσ

n(a+ ic)xn + · · ·+ bkσ
k(a+ ic)xk + · · ·+ b2σ

2(a+ ic) + b0(a+ ic). And
(a+ ic)b(x) = (a+ ic)bnx

n + · · ·+ (a+ ic)bkx
k + · · ·+ (a+ ic)b2x

2 + (a+ ic)b0. Comparing the kth terms,
we want bkσ

k(a+ ic) = bk(a+ ic). Because this is in C, and bk 6= 0, we can cancel the bk’s. But because k
is odd, and complex conjugation is self-inverting, we have σ(a + ic) = a− ic 6= a + ic. Thus, the kth terms
are not equal, and so b(x) is not in the center. Thus, we have Z(A) ⊆ R[x2] and therefore, we have equality.

b) Any element in A/A · (x2 + 1) can be represented uniquely by an element in A having the form ax+ b,
where a, b ∈ C. This is because we can always use the division algorithm to divide any polynomial having
degree 2 or higher by the polynomial x2 + 1 to get a remainder of the form ax + b. This means that any
element of A/A · (x2 + 1) can be represented uniquely by an element of the form p + qi + rx + six, where
p, q, r, s ∈ R. Thus A/A · (x2 + 1) is a four dimensional vector space over R having basis {1, i, x, ix}. On the
other hand H is also a four dimensional vector space over R with basis {1, i, j, k}. Thus if we identify the
elements {1, i, x, ix} in A/A · (x2 + 1) with the elements {1, i, j, k} in H, we get a vector space isomorphism
and thus an additive group isomorphism between A/A · (x2 + 1) and H. To see that this correspondence is
a ring isomorphism, we only need to check if it keeps the multiplicative structure. Multiplication in H is
defined by the identities i2 = −1, j2 = −1, ij = −ji = k. Thus we only need to check if these hold for
the corresponding elements in A/A · (x2 + 1). i2 = −1 is true in A/A · (x2 + 1). x2 = x2 − (x2 + 1) = −1
thus the identity corresponding to j2 = −1 is true in A/A · (x2 + 1). Of course i · x = ix in A/A · (x2 + 1),
corresponding to ij = k in H. Finally xi = īx = −ix in A/A · (x2 + 1) which corresponds to ji = −ij in H.
This proves that A/A · (x2 + 1) is isomorphic to H.
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