
A scheme for constructing mathematical objects

Suppose we have an idea for a new mathematical object, such as a new number system or
geometry, and we want to make our idea concrete so that precise measurements or deductions
can be made. How can we do it? One simple method is to build each element of our object
out of descriptions of that element.

The general approach involves the following steps.

(1) Choose an alphabet of symbols, A, which is suitable for a language that describes
the elements of the object. (A can be any set, such as the Latin alphabet I am using
to type these letters, or the binary alphabet {0, 1}, or the natural numbers N, etc.)

(2) Construct a set S of ‘words’ in the alphabet which is sufficient to describe all ele-
ments of the object to be constructed. (Here S is a set of ‘sensible’ strings in the
alphabet. These strings can be finite or infinite. ‘Sensible’ has no formal meaning,
but intuitively means ‘relevant to the construction’.) The strings in S represent the
elements they ‘describe’.

(3) Define an equivalence relation E on S, which relates two strings s, t ∈ S if they
describe the same element.

(4) Let the elements of the object be S/E.

For example, an alphabet for discussing real numbers could be the set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−, .},

which consists of the 10 decimal digits along with symbols for negation and for the decimal
point.

The set of ‘sensible’ strings in this alphabet is the set S of all infinite strings that have
exactly one decimal point, and have either no negation symbols or have exactly one negation
symbol at the beginning, and which do not begin with either −0 or 0. (Each such string
represents a real number in the usual way.)

Now define an equivalence relation E on S which relates two strings if they are intended
to represent the same real number. E should be defined more precisely, but for this example
I only intend to give an example of strings that should be related: the string .9999 . . . should
be related by E to the string 1.000 . . ..

Finally, R could be defined on the set S/E of equivalence classes of sensible strings. (The
conventional description of R is a little different, but is based on the same ideas.)

The conventional construction of Z

(1) Alphabet = N = {0, 1, 2, . . .}.
(2) ‘Sensible’ strings = N× N = {(m, n) | m, n ∈ N}. (Think: (m, n)↔ m− n.)
(3) E = {((k, `), (m, n)) ∈ (N× N)2 | k + n = m + `}.
(4) Z = (N× N)/E.

Need to check: E really is an equivalence relation.
1



2

Notation: Write mN for the element m ∈ N, write mZ for [(m, 0)]E ∈ Z, write −mZ for
[(0, m)]E ∈ Z.

Need to check: the natural numbers can be identified with the nonnegative integers, and
that under this identification Z = −N ∪ N = {. . . ,−1Z, 0Z, 1Z, 2Z, . . .}.

Adding operations and relations to Z
(1) −[(k, `)]E = [(`, k)]E.
(2) [(k, `)]E + [(m, n)]E = [(k + m, ` + n)]E.
(3) [(k, `)]E · [(m, n)]E = [(km + `n, kn + `m)]E.
(4) [(k, `)]E < [(m, n)]E in Z iff k + n < m + ` in N.

Need to check: these operations and relation are well-defined. (E.g., if [(k, `)]E = [(m, n)]E,
then −[(k, `)]E = −[(m, n)]E. Etc.)

Need to check: the usual rules of arithmetic hold. (E.g., show that x+(y+z) = (x+y)+z
for all x, y, z ∈ Z. Etc.)

The conventional construction of Q
(1) Alphabet = Z.
(2) ‘Sensible’ strings = S = {(p, q) ∈ Z× Z | q 6= 0}. (Think: (p, q)↔ p/q.)
(3) E = {((p, q), (r, s)) ∈ S × S | ps = rq}.
(4) Q = S/E.

Need to check: E really is an equivalence relation.

Operations are defined the way you learned in grade school. There are lots of things to
check!


