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The Four Color Conjecture

Conjecture (Guthrie, 1852)
Any map can be colored with four colors so that no two adjacent regions have
the same color.

Graph-theoretical formulation

If a graph represents a planar map, then it is possible to color its vertices so
that no two adjacent vertices have the same color.
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History

• Proofs were announced for the four color conjecture by Kempe (1879) and
Tait (1880).
• Kempe’s proof was shown to be false by Heawood (1890). Tait’s proof was
shown to be false by Petersen (1891).
• Heawood used ideas from Kempe’s erroneous proof to show that any planar
graph has a proper coloring using at most five colors.
• The conjecture was finally proved by Appel and Haken (1977) using
substantial computer assistance.

Map coloring research may be split into two (mostly unrelated) areas:

1. Graph coloring.
2. Drawing graphs on surfaces.
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Graph Coloring

Definition
If G = (V,E) is a graph and C is a color set, then a proper coloring of G is a
function f : V → C such that ∀u, v(E(u, v)→ (f (u) 6= f (v))).

Definition
The chromatic number of G is the least number of colors needed in a proper
coloring of G. It is denoted χ(G).

Observations

1 χ(Kn) = n.
2 In fact, ω(G) ≤ χ(G).

(Use H ≤ G =⇒ χ(H) ≤ χ(G).)
3 On the other hand, χ(G) ≤ ∆(G) + 1, where ∆(G) denotes the largest

degree of a vertex of G.
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Graph coloring problems in disguise

• How many tanks are required to safely house n species of fish if some
species prey on others?

• How many storerooms are required to store n canisters of chemicals if some
pairs of chemicals are explosive in combination?

• How many frequencies are needed for n radio stations if two stations cannot
use the same frequency when they are within 150 miles of each other?

• How many final examination slots are need for n courses if two courses that
have a common student cannot be scheduled at the same time?

• How many tables are required to seat n guests if some pairs of guests hate
each others’ guts?

• Solve Sudoku.
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Alternative terminology

G is 2-colorable←→ G is bipartite
G is 3-colorable←→ G is tripartite
G is r-colorable←→ G is r-partite

It is easy to determine quickly if a graph is bipartite (how?), but no one knows
an easy way to decide which graphs are r-partite when r > 2.

Definition
A complete r-partite graph, Kn1,...,nr , is a graph (V,E) where

1 V is a union V1 ∪ V2 ∪ · · · ∪ Vr of disjoint sets,
2 every vertex of Vi is adjacent to every vertex of Vj if i 6= j, and
3 there are no other adjacencies.

This conflicts slightly with the notation Kn.
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Drawing Graphs on Surfaces

Every graph that represents a planar map is 4-colorable.

But not every graph is 4-colorable (e.g. Kn for n > 4).

The conclusion is that not all graphs represent planar maps. Which do?

Definition
A graph is planar if it can be drawn in the plane without edges crossing.

These are exactly the graphs that can be drawn on the sphere without edges
crossing.

The connected planar graphs may be thought of as the graphs that represent
dissections of the sphere into polygons.

This suggests the idea that one might be able to distinguish between surfaces
(like the sphere versus the torus) by determining which graphs represent
dissections of the surfaces into polygons.
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Numerical Invariants of Planar Drawings

(v, e, r) = (4, 6, 4), (8, 12, 6), (6, 12, 8), (20, 30, 12), (12, 30, 20)

Euler’s Formula
In any planar drawing of a connected graph, v− e + r = 2.

Proof.
Induction on e.

The proof actually shows that for any surface S, the number v− e + r is the
same for all graphs that represent dissections of S into polygons. This number
may be different for different surfaces. It is called the Euler characteristic of
S, χ(S).
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Eliminating the “r” from Euler’s Formula.

Theorem
Let G = (V,E) be a connected planar graph with |V| = v and |E| = e.

1 e ≤ 3v− 6.
2 If G is bipartite, then e ≤ 2v− 4.

Corollary
K5 and K3,3 are not planar.

Kuratowski’s Theorem
A graph G is planar iff it has no subdivision of K5 or K3,3 as a subgraph.
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