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Subobjects

Monomorphisms ϕ : A → B, ϕ′ : A′ → B are comparable by the relation
ϕ ≤ ϕ′ iff there exists α such that ϕ = ϕ′α. If ϕ ≤ ϕ′ and ϕ′ ≤ ϕ, then ϕ is
equivalent to ϕ′. (Example: any 2 kernels of ψ : B → C are equivalent.)

A subobject of A is an equivalence class of monomorphisms into A.

Thm. There is a smallest subobject of B such that ϕ : A → B factors through
its representatives.

Proof. µ = [ker(coker(ϕ))] has this property. There is a unique ε such that

A ε−−−−→ K
µ−−−−→ B

γ−−−−→ C

and µε = ϕ, so ϕ factors through µ. HW2.5(a) shows that ε is epi.

Now suppose that ϕ factors through some other monomorphism

A ε′−−−−→ K′ µ′−−−−→ B.
By factoring ε if necessary, we may assume that it is epi. Now the HW2.5(b)
proves that µ ≤ µ′. 2
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Canonical Factorization

Quotient objects are defined dually to subobjects.

im(ϕ) := [ker(coker(ϕ))] and

coim(ϕ) := [coker(ker(ϕ))].

Thm. (HW2.5(a))
A

ϕ−→ B factors as A ε−→ I
µ−→ B where µ represents the image and ε

represents the coimage. Either of the maps uniquely determines the other.

Cor. (HW2.6(b))
If ϕ is a monomorphism, then im(ϕ) = [ϕ].
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Complexes and exact sequences

A sequence

· · · dn+1−−−−→ Cn
dn−−−−→ Cn−1

dn−1−−−−→ · · ·
where dndn+1 = 0 for all n is a complex.

If ker(dn) = im(dn+1) (actually [ker(dn)] = im(dn+1)), then the sequence is
exact at Cn.

It is an exact sequence if it is exact at all Cn (except the ends).

Exact sequences are complexes: recall that im(dn+1) is the smallest subobject

of Cn such that dn+1 factors as · · · dn+2→ Cn+1
ε→ I = K

µ→ Cn
dn→ · · · with µ

representing im(dn+1).
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Facts about exactness

0 → A → B is exact iff A→B is a monomorphism.

0 → A → B → 0 is exact iff A → B is an isomorphism.

0 → A → B → C is exact iff A → B is the kernel of B → C.

0 → A → B → C → 0 is exact iff A → B is a monomorphism and
B → C is its cokernel.
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Pullbacks

A diagram
P πB−−−−→ B

πA

y β

y
A α−−−−→ C

is a pullback square if for every pair of maps µ : X → A and ν : X → B such
that

X ν−−−−→ B

µ

y β

y
A α−−−−→ C

commutes there is a unique λ : X → P such that µ = πAλ and ν = πBλ.
(P, πA, πB) is the pullback of α and β. Pushouts are defined dually.
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Converting squares to sequences

From the (possibly noncommutative) diagram

P δ−−−−→ B

γ

y β

y
A α−−−−→ C

we can construct the sequence P
iAγ+iBδ−→ A⊕ B

απA−βπB−→ C. The composition of
the maps in the sequence is αγ − βδ, so the diagram commutes iff the
sequence is a complex. Conversely, given P σ−→ A⊕ B τ−→ C, we can
construct

P πBσ−−−−→ B

πAσ

y −τ iB

y
A

τ iA−−−−→ C
where the difference of the two paths is τσ.
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Characterization of pullbacks

P δ−−−−→ B

γ

y β

y
A α−−−−→ C

is a pullback square iff 0 −→ P −→ A⊕ B −→ C is exact.

Sketch of Proof. (⇐)

From commutative

X ν−−−−→ B

µ

y β

y
A α−−−−→ C,

get complex

Xy
A⊕ B −−−−→ C.

The exactness assumption implies that P → A⊕ B is a kernel. Use the
definition of kernel to obtain the desired map X → P.

(⇒) Compare complex P −→ A⊕ B −→ C with exact sequence
0 −→ K κ−→ A⊕ B −→ C. Use that P is a pullback to show that P → A⊕ B
is equivalent to K → A⊕ B.

Homological Algebra (Feb 10, 2010) Complexes and Exact Sequences in Abelian Categories 8 / 10



Characterization of pullbacks

P δ−−−−→ B

γ

y β

y
A α−−−−→ C

is a pullback square iff 0 −→ P −→ A⊕ B −→ C is exact.

Sketch of Proof. (⇐)

From commutative

X ν−−−−→ B

µ

y β

y
A α−−−−→ C,

get complex

Xy
A⊕ B −−−−→ C.

The exactness assumption implies that P → A⊕ B is a kernel. Use the
definition of kernel to obtain the desired map X → P.

(⇒) Compare complex P −→ A⊕ B −→ C with exact sequence
0 −→ K κ−→ A⊕ B −→ C. Use that P is a pullback to show that P → A⊕ B
is equivalent to K → A⊕ B.

Homological Algebra (Feb 10, 2010) Complexes and Exact Sequences in Abelian Categories 8 / 10



Characterization of pullbacks

P δ−−−−→ B

γ

y β

y
A α−−−−→ C

is a pullback square iff 0 −→ P −→ A⊕ B −→ C is exact.

Sketch of Proof. (⇐)

From commutative

X ν−−−−→ B

µ

y β

y
A α−−−−→ C,

get complex

Xy
A⊕ B −−−−→ C.

The exactness assumption implies that P → A⊕ B is a kernel. Use the
definition of kernel to obtain the desired map X → P.

(⇒) Compare complex P −→ A⊕ B −→ C with exact sequence
0 −→ K κ−→ A⊕ B −→ C. Use that P is a pullback to show that P → A⊕ B
is equivalent to K → A⊕ B.

Homological Algebra (Feb 10, 2010) Complexes and Exact Sequences in Abelian Categories 8 / 10



Existence of pullbacks

Thm. Pullbacks exist.
Idea of Proof. Given α : A → C and β : B → C, construct P as the kernel of
the induced map A⊕ B → C.
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Behavior of pullbacks with respect to monics and epis

Thm. If

P δ−−−−→ B

γ

y β

y
A α−−−−→ C

is a pullback square and K κ→ P is a kernel of δ, then

K κ→ P
γ→ A is a kernel of α. (In particular, δ monic implies α monic.)

Thm. In the diagram above

δ monic iff α monic and

α epi implies δ epi.

Proofs given in class.
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