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Subobjects

Monomorphisms ¢ : A — B, ¢’': A’ — B are comparable by the relation
o < o iff there exists o such that ¢ = ¢'a. If ¢ < ¢’ and ¢’ < @, then ¢ is
equivalent to ¢'. (Example: any 2 kernels of ¢): B — C are equivalent.)
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Subobjects

Monomorphisms ¢ : A — B, ¢’': A’ — B are comparable by the relation
o < o iff there exists o such that ¢ = ¢'a. If ¢ < ¢’ and ¢’ < @, then ¢ is
equivalent to ¢'. (Example: any 2 kernels of ¢): B — C are equivalent.)

A subobject of A is an equivalence class of monomorphisms into A.

Thm. There is a smallest subobject of B such that o: A — B factors through
its representatives.
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Subobjects

Monomorphisms ¢ : A — B, ¢’': A’ — B are comparable by the relation
o < o iff there exists o such that ¢ = ¢'a. If ¢ < ¢’ and ¢’ < @, then ¢ is
equivalent to ¢'. (Example: any 2 kernels of ¢): B — C are equivalent.)

A subobject of A is an equivalence class of monomorphisms into A.

Thm. There is a smallest subobject of B such that o: A — B factors through
its representatives.

Proof. i = [ker(coker(y))] has this property. There is a unique € such that

A——K-—+r>B—"-cC
and pe = ¢, so ¢ factors through p. HW2.5(a) shows that ¢ is epi.
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Subobjects

Monomorphisms ¢ : A — B, ¢’': A’ — B are comparable by the relation
o < o iff there exists o such that ¢ = ¢'a. If ¢ < ¢’ and ¢’ < @, then ¢ is
equivalent to ¢'. (Example: any 2 kernels of ¢): B — C are equivalent.)

A subobject of A is an equivalence class of monomorphisms into A.

Thm. There is a smallest subobject of B such that o: A — B factors through
its representatives.

Proof. i = [ker(coker(y))] has this property. There is a unique € such that
A——Kk-—+t>B—">¢C
and pe = ¢, so ¢ factors through p. HW2.5(a) shows that ¢ is epi.

Now suppose that ¢ factors through some other monomorphism
ALk 2. p

By factoring ¢ if necessary, we may assume that it is epi. Now the HW2.5(b)

proves that p < p'. O
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Canonical Factorization

Quotient objects are defined dually to subobjects.
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Canonical Factorization

Quotient objects are defined dually to subobjects.

im(¢p) := [ker(coker(¢))] and
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Canonical Factorization

Quotient objects are defined dually to subobjects.
im(¢p) := [ker(coker(¢))] and
coim(y) := [coker(ker(p))].
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Canonical Factorization

Quotient objects are defined dually to subobjects.
im(¢p) := [ker(coker(¢))] and
coim(y) := [coker(ker(p))].

Thm. (HW2.5(a))
A -2 B factors as A — I - B where w represents the image and e
represents the coimage. Either of the maps uniquely determines the other.
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Canonical Factorization

Quotient objects are defined dually to subobjects.
im(¢p) := [ker(coker(¢))] and
coim(y) := [coker(ker(p))].

Thm. (HW2.5(a))
A -2 B factors as A — I - B where w represents the image and e
represents the coimage. Either of the maps uniquely determines the other.

Cor. (HW2.6(b))
If ¢ is a monomorphism, then im(y) = [¢].
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Complexes and exact sequences

A sequence
d, +1
n Cn

where d,d,+1 = O for all nis a complex.
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Complexes and exact sequences

A sequence

dn+1 Cn dn dn—l

where d,d,+1 = O for all nis a complex.

If ker(d,) = im(d,+1) (actually [ker(d,)] = im(d,+1)), then the sequence is
exact at C,.
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Complexes and exact sequences

A sequence

dn+1 dn dn—l

o

where d,d,+1 = O for all nis a complex.

If ker(d,) = im(d,+1) (actually [ker(d,)] = im(d,+1)), then the sequence is
exact at C,.

It is an exact sequence if it is exact at all C,, (except the ends).
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Complexes and exact sequences

A sequence

dn+1 dn dn—l

Cn
where d,d,+1 = O for all nis a complex.

If ker(d,) = im(d,+1) (actually [ker(d,)] = im(d,+1)), then the sequence is
exact at C,.

It is an exact sequence if it is exact at all C,, (except the ends).

Exact sequences are complexes: recall that im(d,) is the smallest subobject

dy dy .
of C, such that d,, factors as - - - asy 1 S1=Kk4% C,— --- withpu

representing im(d,+1).
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Facts about exactness

o 0 — A — Bisexact iff A—B is a monomorphism.
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Facts about exactness

o 0 — A — Bisexact iff A—B is a monomorphism.

o 0 - A — B — Oisexactiff A — B is an isomorphism.
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Facts about exactness

o 0 — A — Bisexact iff A—B is a monomorphism.
o 0 - A — B — Oisexactiff A — B is an isomorphism.

@ 0 — A — B — Cisexactiff A — Bis the kernel of B — C.
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Facts about exactness

o 0 — A — Bisexact iff A—B is a monomorphism.
o 0 - A — B — Oisexactiff A — B is an isomorphism.
e 0 - A — B — Cisexactiff A — Bis the kernel of B — C.

¢ 0 —-A— B— C— 0Oisexactiff A — Bis a monomorphism and
B — C is its cokernel.
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Pullbacks

A diagram

P - .B

|

A—2-C
is a pullback square if for every pair of maps pi: X — A and v: X — B such
that

X —~- B
]
A—2-C
commutes there is a unique A: X — P such that y = m4 A and v = 7.
(P, ma, mg) is the pullback of « and . Pushouts are defined dually.
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Converting squares to sequences

From the (possibly noncommutative) diagram

)

P —— B

|l
A—2-C

A’Y-HBJ amy— BTrB

we can construct the sequence P A®B C. The composition of
the maps in the sequence is ay — 39, so the diagram commutes iff the
. . g T
sequence is a complex. Conversely, given P — A & B — C, we can
construct o
P 2B

ﬂAUl —Tip J{
Tig

A—— C
where the difference of the two paths is 7.
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Characterization of pullbacks

p—° . B

Wl ﬁl is a pullback square iff 0 — P — A & B — C'is exact.

A—2-C
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Characterization of pullbacks

p—° . B

Vl 'Bl is a pullback square iff 0 — P — A & B — C is exact.
A ——C

Sketch of Proof. (<)

X~ B X
From commutative Ml ﬁl get complex l
A—2-C, A®B —— C.

The exactness assumption implies that P — A & B is a kernel. Use the
definition of kernel to obtain the desired map X — P.
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Characterization of pullbacks

5

P —— B

Wl 'Bl is a pullback square iff 0 — P — A & B — C is exact.

A—-C
Sketch of Proof. (<)
X Y- B X

From commutative Ml gl get complex l

a

A —— C, A®B —— C.
The exactness assumption implies that P — A & B is a kernel. Use the

definition of kernel to obtain the desired map X — P.

(=) Compare complex P — A ©& B — C with exact sequence
0 — K -5 A@® B — C. Use that P is a pullback to show that P — A & B
is equivalent to K — A & B.
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Existence of pullbacks

in Abelian Cate;



Existence of pullbacks

Thm. Pullbacks exist.
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Existence of pullbacks

Thm. Pullbacks exist.
Idea of Proof. Given a: A — Cand 3: B — C, construct P as the kernel of
the induced map A ® B — C.
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Behavior of pullbacks with respect to monics and epis
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Behavior of pullbacks with respect to monics and epis

)

P —— B

Thm. If vl ﬁl is a pullback square and K - P is a kernel of 4, then

A—25C

K5 P2 Aisakernel of a. (In particular, 6 monic implies cv monic.)
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Behavior of pullbacks with respect to monics and epis

)

P —— B

Thm. If vl ﬁl is a pullback square and K - P is a kernel of 4, then

A—2.C
K5 P2 Aisakernel of a. (In particular, 6 monic implies cv monic.)

Thm. In the diagram above
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Behavior of pullbacks with respect to monics and epis

)

P —— B

Thm. If vl ﬁl is a pullback square and K - P is a kernel of 4, then
A—2.C
K5 P2 Aisakernel of a. (In particular, 6 monic implies cv monic.)

Thm. In the diagram above

@ § monic iff & monic and
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Behavior of pullbacks with respect to monics and epis

)

P —— B
Thm. If vl ﬁl is a pullback square and K - P is a kernel of 4, then
A—2.C
K5 P2 Aisakernel of a. (In particular, 6 monic implies cv monic.)
Thm. In the diagram above

@ § monic iff & monic and

@ « epi implies 4 epi.
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Behavior of pullbacks with respect to monics and epis

)

P —— B
Thm. If vl ﬁl is a pullback square and K - P is a kernel of 4, then
A—2.C
K5 P2 Aisakernel of a. (In particular, 6 monic implies cv monic.)
Thm. In the diagram above

@ § monic iff & monic and

@ « epi implies 4 epi.
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Behavior of pullbacks with respect to monics and epis

)

P —— B

Thm. If vl ﬁl is a pullback square and K - P is a kernel of 4, then
A—2.C

K5 P2 Aisakernel of a. (In particular, 6 monic implies cv monic.)

Thm. In the diagram above
@ ¢ monic iff & monic and

@ « epi implies 4 epi.

Proofs given in class.
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