
Theorem 1. Extn(A, B) ∼= extn(A, B).

Proof. The proof is exactly like that for Tor, so we outline the steps only.

I. Start with projective and injective resolutions of A and B.

· · · −−−→ P1 −−−→ P0 −−−→ A −−−→ 0

0 −−−→ B −−−→ E0 −−−→ E1 −−−→ · · ·

II. Factor resolutions into SES’s:

0 −−−→ Ki −−−→ Pi −−−→ Ki−1 −−−→ 0; A = K−1.

0 −−−→ Li−1 −−−→ Ei −−−→ Li −−−→ 0; B = L−1.

III. Apply Hom (= H) to SES’s to obtain a commutative diagram with exact rows and
columns:

0 0 0y y y
0 −−−→ H(Ki−1, L

j−1) −−−→ H(Ki−1, E
j) −−−→ H(Ki−1, L

j) −−−→ Zijy y y y
0 −−−→ H(Pi, L

j−1) −−−→ H(Pi, E
j) −−−→ H(Pi, L

j) −−−→ 0y y y y
0 −−−→ H(Ki, L

j−1) −−−→ H(Ki, E
j) −−−→ H(Ki, L

j) −−−→ Yijy y y
Wij −−−→ 0 −−−→ Xij

IV. Use the Snake Lemma to deduce that Wij
∼= Zij. Use the defining property of cokernels

and the commutativity of the small squares with lower right corners Xij and Yij to deduce
that Xij

∼= Yij.

V. Use the long exact sequences for Ext and ext and the facts that Ext1(M, ) vanishes on
injectives and ext1( , N) vanishes on projectives to deduce that

(i) Wij
∼= ext1(Ki−1, L

j−1)
(ii) Xij

∼= ext1(Ki−1, L
j)

(iii) Yij
∼= Ext1(Ki, L

j−1)
(iv) Zij

∼= Ext1(Ki−1, L
j−1)
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VI. Complete proof that Extn(A, B) ∼= extn(A, B) using dimension shifting and the isomor-
phisms W ∼= Z and X ∼= Y . (Note: at this point of the proof we can only shift dimension
in the right variable of Ext and the left variable of ext.)

Proof for n = 1: Ext1(A, B) = Ext1(K−1, L
−1) ∼= Z00

∼= W00
∼= ext1(K−1, L

−1) ∼=
ext1(A, B).

Proof for higher n:

Extn+1(A, B) = Extn+1(K−1, L
−1)

∼= Ext1(K−1, L
n−1) Dimension shifting for Ext

∼= ext1(K−1, L
n−1) Z0n

∼= W0n
∼= Ext1(K0, L

n−2) X0(n−1)
∼= Y0(n−1)

∼= ext1(K0, L
n−2) Z1(n−1)

∼= W1(n−1)
∼= Ext1(K1, L

n−3) X1(n−2)
∼= Y1(n−2)

...
∼= ext1(Kn−1, L

−1)
∼= extn+1(K−1, L

−1) Dimension shifting for ext
= extn+1(A, B).
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