
Tyson Gern, Adam Lizzi Homework 6, Problem 5 May 3, 2010

Problem 5. Describe all central extensions of Z2×Z2 by Z2 up to equivalence. Explain why
some inequivalent extentions have isomorphic middle factors.

Solution. Before we start on the problem at hand, we’ll recall the catalog of groups of order
eight. There are five of them: Z8, Z4 × Z2, Z2 × Z2 × Z2, D4 (the group of symmetries of
the square), and Q8 (the group of quaterions). Which could feasibly be central extensions of
Z2×Z2 by Z2? We need Z2×Z2 to inject into the center of the group we put in the middle
of the extension. The centers of D4 and Q8 are too small to accept a group of order four,
and the center of Z8 is Z8 itself, which does not have a subgroup isomorphic to Z2 × Z2, as
all subgroups of a cyclic subgroup are cyclic. This leaves just two options, Z2×Z2×Z2 and
Z4 × Z2. So if we find an element of order more than two in one of our middle groups, it
must be isomorphic to Z4 × Z2.

Also recall that central extensions are those extensions 0 → K → G → Q → 0 where
the action of the quotient Q on the normal subgroup K is trivial. So once a 2-cocycle f is
specified, we can completely describe the group G that goes in the middle: as a set it looks
like (Z2 × Z2)× Z2, and its multiplication is given by the following rule. If k1, k2 ∈ Z2 × Z2

and q1, q2 ∈ Z2, then (k1, q1)(k2, q2) = (k1 + k2 + f(q1, q2), q1q2). (We follow the convention
from class that the quotient will be written multiplicatively and the normal subgroup will
be written additively. As such, consider the quotient group Z2 to be the group {±1} under
multiplication.) We now focus on determining 2-cocycles.

A 2-cocycle is, first of all, a function (Z2)
2 → Z2 × Z2. If we restrict our attention

to normalized 2-cocycles f , then we can fill in for free three of its four values: f(1, 1) =
f(1,−1) = f(−1, 1) = (0, 0). The only nontrivial value of f is f(−1,−1), and it can be any
element of Z2 × Z2. Write fk for 2-cocycle which satisfies fk(−1,−1) = k. So there are four
normalized 2-cocycles: f(0,0), f(0,1), f(1,0), and f(1,1). What of 2-coboundaries? The extensions
the cocycles create will be distinct only up to coboundaries. In this case, all the coboundaries
are zero, so our cocycles are distinct. Work with normalized 2-coboundaries, which arise from
normalized 1-cochains. A normalized 1-cochain is a function g : Z2 → Z2 × Z2 satisfying
g(1) = 0. Any choice for g(−1) will then make g into a group homomorphism. Thus
dg(x, y) = g(y)− g(xy) + g(x) will always be zero, as claimed.

We’ve decided that our four distinct 2-cocycles lead to four groups, using the multipli-
cation rule suggested two paragraphs up. To save time, abbreviate (Z2 × Z2) otriv,fk Z2 as
just Gk. So there are four groups, G(0,0), G(0,1), G(1,0), and G(1,1). These give rise to four
extensions; following the same naming convention, let 0 → Z2 × Z2 → Gk → Z2 → 0 be
denoted Ek.

Each Gk is either isomorphic to Z2 × Z2 × Z2 or Z4 × Z2; which is which? Start with
G(0,0). Then f(0,0) is the trivial function that always returns (0, 0), so the multiplication in
G(0,0) is given by (k1, q1)(k2, q2) = (k1 +k2, q1q2). This is the operation on the direct product,
so G(0,0) is the direct product (three cyclic groups of order two). In each of the other groups,
((1, 0),−1) will have order four. (In fact, any element with −1 in the second coordinate
will have order four.) In every group the identity element is ((0, 0), 1), so if we multiply
((1, 0),−1) by itself and don’t get the identity element, by the remarks above, we must have
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an element of order four. Check:

in G(1,0), ((1, 0),−1) ((1, 0),−1) = ((1, 0) + (1, 0) + (1, 0),−1 · −1) = ((1, 0), 1)
in G(0,1), ((1, 0),−1) ((1, 0),−1) = ((1, 0) + (1, 0) + (0, 1),−1 · −1) = ((0, 1), 1)
in G(1,1), ((1, 0),−1) ((1, 0),−1) = ((1, 0) + (1, 0) + (1, 1),−1 · −1) = ((1, 1), 1) ,

veryifying the claim. Conclude G(1,0)
∼= G(0,1)

∼= G(1,1)
∼= Z4 × Z2.

We notice that the middle factors of E(0,1) and E(1,0) are both isomorphic to Z4×Z2, yet
we will see that these two extensions are in fact inequivalent. Suppose that there was some
equivalence (1, β, 1) between E(0,1) and E(1,0). Then we would get the following commutative
diagram: (

E(0,1)

)
0 // Z2 × Z2

�

i //

1

��

G(0,1)

�

ε //

β

��
�
�
�

Z2
//

1

��

0

(
E(1,0)

)
0 // Z2 × Z2

i′ // G(1,0)
ε′ // Z // 0

We see that i : k 7→ (k, 1) and i′ : k 7→ (k, 1). Then by the commutativity of the diagram
β(k, 1) = β ◦ i(k) = i′ ◦ 1(k) = (k, 1).

Now in G(0,1) we see that there are four elements, ((0, 0),−1), ((0, 1),−1), ((1, 0),−1),
and ((1, 1),−1), of order four, and each of these elements square to ((0, 1), 1). However, the
same elements have order four in G(1,0), but they each square to ((1, 0), 1). But β((0, 1), 1) =
((0, 1), 1), which we see is not the square of an order four element in G(1,0), so such a map β
cannot exist, thus E(0,1) and E(1,0) are inequivalent. We can use the same argument to show
that even though E(0,1), E(1,0), and E(1,1) all have isomorphic middle factors, the extensions
are inequivalent.

2


