
HOMOLOGICAL ALGEBRA: HOMEWORK 2

MATTHEW MOORE, JOHN TULEY, NICK PRATARELLI

5) Prove the following strong form of the remark made at the bottom of page 425.

(a) If C is an abelian category and A
ϕ→ B is a morphism in C, then ϕ can be

factored as A
ε→ I

µ→ B, where ε = coker(ker(ϕ)) and µ = ker(coker(ϕ)).
(b) If

(1) A
ϕ //

α

��

B

β

��
A′

ϕ′
// B′

commutes and ϕ′ has an epi-mono factorization, then there is a unique morphism

I
γ→ I ′ such that

(2) A
ε //

α

��

I
µ //

γ

��

B

β

��
A′

ε′
// I ′

µ′
// B′

commutes.

Solution

(a) Proof. We begin by proving the existence of such an ε. Since µ = ker(cokerϕ)
and (cokerϕ)ϕ = 0, ϕ must factor through µ via some unique morphism ε:

B
cokerϕ

��?
??

??
??

I

µ

OO

0
// Q

A

ϕ

BB

0

<<

ε

??

In order to show that ε is epi, we first prove a smaller claim:

Claim 1. Under the assumptions of the problem, suppose that A
e→ J

m→ B is a
factorization of ϕ with m monic. Then there is unique monic α : I → J such that
mα = µ.

Proof of Claim. µ = ker(cokerϕ), so

cokerµ = coker(ker(cokerϕ)) = cokerϕ.
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Furthermore,

(cokerm)ϕ = (cokerm)me = 0e = 0.

Therefore cokerm factors uniquely through cokerµ = cokerϕ via a unique β such
that the lower triangle in

A
ε //

e

��

I

µ

��
J m

// B
cokerm//

cokerµ

��

C

Q

β

??

commutes (the square commutes by assumption). This implies that

(cokerm)µ = β(cokerµ)µ = β0 = 0.

µ and m are monic, so ker(cokerµ) = µ and ker(cokerm) = m. Thus µ factors
through m. That is, there is unique α : I → J such that mα = µ. Since µ is monic,
α must also be monic. �

Remark. In the dual of this claim, the maps µop = coker(ker(ϕ)) and mop are epic,
the cokernels become kernels, and αop : J → I is epic.

Continuing with the proof of the problem, ε is epic if and only if fε = 0 implies
that f = 0. Suppose that fε = 0 with f : I → C. Then ε factors through the kernel
of f , say ε = (ker f)β for some β : A → K. Therefore ϕ = µε = µ(ker f)β. Since
µ(ker f) is monic, from the claim above there is unique monic map α : I → K such
that µ(ker f)α = µ. µ is monic, so (ker f)α = 1. Therefore (ker f)α(ker f) = ker f ,
so α(ker f) = 1. Hence ker f and α are isomorphisms. But ker f is an isomorphism
if and only if f = 0. Thus ε is epi.

Finally, we show that ε = coker(kerϕ). Let e = coker(kerϕ). Then since

µε(kerϕ) = ϕ(kerϕ) = 0

and µ is monic, ε(kerϕ) = 0. Therefore there is unique β such that

K
kerϕ

  @
@@

@@
@@

0

��0

��

C
β

��

Ae
oo

ε
rrI

commutes. Hence ϕ = µε = (µβ)e. Both ε and e are epi, so by the dual of
the claim above, there is a unique epimorphism α such that αε = e. Therefore
ε = βe = βαε. Since ε is epi, this implies that βα = 1. Therefore αβα = α,
so αβ = 1. Hence α and β are isomorphisms, and ε and e = coker(kerϕ) are
isomorphic. Thus ε = coker(kerϕ). �

(b) Proof.

Claim 2. Any two epi-mono factorizations of ϕ : A→ B are isomorphic.
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Proof of Claim. It will be sufficient to show that any epi-mono factorization of
ϕ is isomorphic to the factorization ϕ = me, where e = coker(kerϕ) and m =
ker(cokerϕ). Suppose that ϕ = εµ is an epi-mono factorization of ϕ. Working from
the previous claim and its dual, we have the following commutative diagram

L
κ

~~~~
~~

~~
~~

ker ε

��
K

ker e
// A

e //

ε

��

J

m

��θvv
I µ

//

κ
77

B
cokerµ//

cokerm

��

R

Q
θ

??�������

with κ epic and θ monic and unique such that the diagram commutes. The com-
mutativity implies

me = ϕ = µε = (mκ)(θe) = m(κθ)e

and

µε = ϕ = me = (µθ)(κε) = µ(θκ)ε.

Since m is monic and e is epic, the first equality implies that κθ = 1J . Similarly,
since µ is monic and ε is epic, the second equality implies that θκ = 1I . Hence κ
is an isomorphism and ε is isomorphic to e = coker(kerϕ) and µ is isomorphic to
m = ker(cokerϕ). �

Returning to the proof of the problem, by the above claim we may assume with-
out loss of generality that ε = coker(kerϕ), µ = ker(cokerϕ), ε′ = coker(kerϕ′),
and µ′ = ker(cokerϕ′). From the commutativity of the square in (1),

µ′ε′α(kerϕ) = ϕ′α(kerϕ) = βϕ(kerϕ) = β0 = 0

and

(cokerϕ′)βµε = (cokerϕ′)βϕ = (cokerϕ′)ϕ′α = 0α = 0.

µ′ is monic, so the first equality implies that ε′α(kerϕ) = 0. ε is epi, so the
second equality implies that (cokerϕ′)βµ = 0. Since ε = coker(kerϕ) and µ′ =
ker(cokerϕ′), there are unique γ, γ′ : I → I ′ such that

A

ε

�� ε′α

��

K

kerϕ
>>~~~~~~~

0
//

0 00

I
γ

��
I ′

and

B′

cokerϕ′

  @
@@

@@
@@

@

I ′

µ′

OO

0
// Q

I

βµ

::

0

DD
γ′

??

commute. The commutativity of these diagrams and of the square in (1) yields

µ′γ′ε = βµε = βϕ = ϕ′α = µ′ε′α = µ′γε.
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Since µ′ is monic, γ′ε = γε. Since ε is epi, γ = γ′. Finally, the commutativity of
the two diagrams above immediately gives

γε = ε′α and µ′γ = βµ,

proving that the rectangle (2) commutes. �


