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Problem (7). Let O be the ordered pair functor from Set to itself (O(A) = A × A,O(f) = f × f). Let U
be the unordered pair from Set to itself, (U(A) = {{x, y} : x, y ∈ A}, U(f)({x, y}) = {f(x), f(y)}). Then
there are exactly three natural transformations from O to U . They are given by

1. ηA : O(A)→ U(A) where (x, y) 7→ {x, y}.

2. τA : O(A)→ U(A) where (x, y) 7→ {x}.

3. θA : O(A)→ U(A) where (x, y) 7→ {y}.

Proof. First we check these are indeed natural transformations. This amounts to checking that for any sets
A, B and any function f : A→ B the diagrams below commute (subscripts have been suppressed).

O(A)
O(f)- O(B)

U(A)

η, τ, θ

? U(f)- U(B)

η, τ, θ

?

For all x, y ∈ A we have the following three equalities:

1. (U(f) ◦ ηA)(x, y) = U(f)({x, y}) = {f(x), f(y)} = ηB(f(x), f(y)) = (ηB ◦O(f))(x, y).

2. (U(f) ◦ τA)(x, y) = U(f)({x}) = {f(x)} = τB(f(x), f(y)) = (τB ◦O(f))(x, y).

3. (U(f) ◦ θA)(x, y) = U(f)({y}) = {f(y)} = θB(f(x), f(y)) = (θB ◦O(f))(x, y).

Thus η, τ and θ do define natural transformations from O to U .
To show that these are the only such, we offer two arguments. The first argument uses the Yoneda lemma

(see, for example, MacLane’s book on category theory). The second is self-contained, but is longer.
Argument 1. Recall from lecture that the functor O is naturally isomorphic to Hom(2, ), where 2

is the set {0, 1}. By the Yoneda lemma the set of natural transformations from Hom(2, ) to U are in
bijective correspondence with the members of U(2) = {{0, 1}, {0}, {1}}, thus there are exactly three such
transformations, so they must be the above.

Argument 2. Let ρ be any natural transformation from O to U and fix a set A. As an initial step, we
want to show that ρA is necessarily one of ηA, τA or θA. Note that if A is empty then so are O(A) and U(A)
so that there is a unique function ρA : O(A)→ U(A), and necessarily, ρA = ηA = τA = θA. If A = {a} is a
singleton then O(A) = {(a, a)} and U(A) = A, so there is once again a unique function ρA : O(A)→ U(A),
and again ρA = ηA = τA = θA. We may therefore assume that |A| ≥ 2.

Let x and y be any (not necessarily distinct) elements of A. We claim that ρA(x, y) ⊆ {x, y}. To see
this, let f : A→ A be defined by

f(c) =

{
x if c = x,
y otherwise.
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Note that O(f)(x, y) = (x, y), and for arbitrary a, b ∈ A, U(f)({a, b}) ⊆ {x, y}, so in particular we have
U(f)(ρA(x, y)) ⊆ {x, y}. Now, by assumption that ρ is natural,

(ρA ◦O(f))(x, y) = ρA(x, y) = (U(f) ◦ ρA)(x, y) ⊆ {x, y},

So the claim is verified.
Since ∅ /∈ U(A) it follows that ρA agrees with one of ηA, τA or θA on (x, y). This is true for every pair,

so in particular for any a ∈ A we have ρA(a, a) = ηA(a, a) = τA(a, a) = θA(a, a) = {a}. Now suppose that
x 6= y. For each pair of distinct elements a, b ∈ A, define g(a,b) : A→ A by

g(a,b)(c) =

{
a if c = x,
b otherwise.

Note that as x 6= y we have O(g)(x, y) = (a, b). Also, by assumption that ρ is a natural transformation, we
have the following diagram.

O(A)
O(g(a,b))- O(A)

©

U(A)

ρA

? U(g(a,b))- U(A)

ρA

?

We now consider three cases.
Case 1: ρA(x, y) = ηA(x, y). Then for each a, b ∈ A with a 6= b, we have U(g(a,b))ρA(x, y) =

U(g(a,b))({x, y}) = {a, b}. By commutativity of the above diagram,

(U(g(a,b)) ◦ ρA)(x, y) = U(g(a,b))({x, y}) = {a, b} = (ρA ◦O(g(a,b)))(x, y) = ρA(a, b).

Therefore ρA(a, b) = ηA(a, b) also for all pairs with a 6= b, so ρA = ηA.
Case 2: ρA(x, y) = τA(x, y) = {x}. Then for all a 6= b, U(g(a,b))ρA(x, y) = U(g(a,b))({x}) = {a},

therefore,
(U(g(a,b)) ◦ ρA)(x, y) = U(g(a,b))({x}) = {a} = (ρA ◦O(g(a,b)))(x, y) = ρA(a, b).

Thus, as before, ρA = τA.
Case 3: ρA(x, y) = θA(x, y) = {y}. Then U(g(a,b))(ρA(x, y)) = U(g(a,b))({y}) = {b}, so

(U(g(a,b)) ◦ ρA)(x, y) = U(g(a,b))({y}) = {b} = (ρA ◦O(g(a,b)))(x, y) = ρA(a, b).

Hence ρA = θA.
In sum we have shown that ρA ∈ {ηA, τA, θA}. It remains to show that if ρA = ηA (respectively τA, θA),

then also ρB = ηB (respectively τB , θB) for any set B.
If B is empty or a singleton then, as we have already observed, ηB = τB = θB = ρB . We may therefore

take w, z ∈ B with w 6= z. By our previous arguments ρB ∈ {ηB , τB , θB}. Define h : A→ B by

h(c) =

{
w if c = x,
z otherwise.

Thus we have O(h)(x, y) = (w, z).
In case ρA(x, y) = ηA(x, y) = {x, y} then U(h)(ρA(x, y)) = U(h)({x, y}) = {w, z}, and, again by natu-

rality,
(U(h) ◦ ρA)(x, y) = U(h)({x, y}) = {w, z} = (ρB ◦O(h))(x, y) = ρB(w, z).

Thus ρB(w, z) = ηB(w, z), and hence also ρB = ηB , by our previous work.
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In case ρA(x, y) = τA(x, y) = {x} then U(h)(ρA(x, y)) = U(h)({x}) = {w}, so

(U(h) ◦ ρA)(x, y) = U(h)({x}) = {w} = (ρB ◦O(h))(x, y) = ρB(w, z),

so ρB = τB .
Finally, if ρA(x, y) = θA(x, y) = {y} then U(h)(ρA(x, y)) = U(h)({y}) = {z}, so

(U(h) ◦ ρA)(x, y) = U(h)({y}) = {z} = (ρB ◦O(h))(x, y) = ρB(w, z).

Thus, whether ρ agrees with η, τ or θ on A it agrees correspondingly on B so that ρ is truly equal to one of
our three transformations.
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