
Modern Algebra 2 (MATH 6140)
Test #2
Solution Key

This exam is due Friday, March 21. You are expected to complete three problems,
one from each group. Clearly mark which problems are to be graded.

You may use your book, but you may not communicate with others concerning the
exam. In order to receive full credit your answer must be complete, legible and
correct.

I have neither given nor received aid on this exam.

Name:

1



2

Group 1.

1. Let R be an integral domain. Suppose that every finitely generated R-module
is isomorphic to one of the form R/(a1) ⊕ · · · ⊕ R/(ak) ⊕ (⊕rR). Show that R is a
PID.

Solution. Let I � R be a nonzero ideal. R/I is a cyclic torsion module, so

(1) R/I ∼= R/(a1) ⊕ · · · ⊕ R/(ak).

Isomorphic modules have the same annihilator, so

I = AnnR(R/I) = AnnR(R/(a1) ⊕ · · · ⊕ R/(ak)) = (a1) ∩ · · · ∩ (ak).

To show that I is principal, it is enough to show that
⋂

(ai) is principal.

Claim 1. If ideals J and K are comaximal (J +K = R), then J ∩K = JK. (Hence
if principal ideals (a) and (b) are comaximal, then (a) ∩ (b) = (ab) is principal.)

Since J and K are ideals, JK ⊆ J and JK ⊆ K, so JK ⊆ J ∩ K. Moreover,
both J and K multiply the larger ideal into the smaller (i.e., J(J ∩ K) ⊆ J K and
(J ∩ K)K ⊆ J K). This yields the reverse inclusion

J ∩ K = R(J ∩ K) = (J + K)(J ∩ K) = J(J ∩ K) + K(J ∩ K) ⊆ JK.

Claim 2. (a1) ∩ · · · ∩ (ai) = (a1a2 · · ·ai) is comaximal with (ai+1) for all i.

By (1), R/(a1)⊕ · · · ⊕R/(ak) is a cyclic module, so the quotient R/(a1)⊕R/(a2)
is cyclic. If (a1) and (a2) are not comaximal, then there is a maximal ideal M � R
such that (a1) + (a2) ⊆ M . Tensoring the cyclic R-module R/(a1)⊕R/(a2) with the
(R/M, R)-bimodule R/M , which is a field, we get a cyclic R/M-vector space

R/M ⊗R (R/(a1) ⊕ R/(a2)) ∼= R/M ⊕ R/M.

But a cyclic R/M-space is 1-dimensional, and R/M ⊕ R/M is 2-dimensional.
Since C = R/(a1) ⊕ R/(a2) is a cyclic module, it is isomorphic to R/AnnR(C) =

R/((a1) ∩ (a2)). But (a1) and (a2) are comaximal, so (a1) ∩ (a2) = (a1a2), yielding

(R/(a1) ⊕ R/(a2)) ⊕ R/(a3) ⊕ · · · ⊕ R/(ak) ∼= R/(a1a2) ⊕ R/(a3) ⊕ · · · ⊕ R/(ak).

This module is still cyclic, so we can repeat the argument.

Altogether, I =
⋂

(ai) = (a1 · · ·ak).

2. Prove or disprove: the rational canonical form of a permutation matrix is a
permutation matrix.

Solution. (Discussion) The statement is true for cyclic permutations, and some
others, but not for all permutations.

An n × n permutation matrix is the matrix of a transformation Σ, derived from a
permutation σ ∈ Sn, that is defined to act on the basis B = (e1, . . . , en) by Σ(ei) =
eσ(i). If σ = (1 2 · · · n), then
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B[Σ]B =







0 0 0 ··· 0 1
1 0 0 0 0
0 1 0 0 0
...

...
...

0 0 0 0 0
0 0 0 ··· 1 0






,

which is the companion matrix for the polynomial xn − 1. Hence xn − 1 is both the
characteristic and minimal polynomial for B[Σ]B, and B[Σ]B = RCF(Σ).

But now consider a permutation τ = σ1 · · ·σk that is a product of k disjoint cyclies
of lengths ℓ1, . . . , ℓk. If T acts on basis elements by T (ei) = eτ(i), then [T ] is a block
diagonal matrix with companion matrices for xℓ1 − 1, . . . , xℓk − 1 on the diagonal.
Hence the characteristic polynomial for [T ] is χT (x) =

∏

(xℓi − 1) and the minimal
polynomial is mT (x) = lcm(xℓi − 1). The last diagonal block of RCF(T ) is the
companion matrix for mT (x), so if this polynomial is not of the form xm − 1, then
RCF(T ) will not be a permutation matrix.

(Solution begins here!) So, a counterexample is given by τ = (1 2)(3 4 5), which
has the properties that χT (x) = (x2 − 1)(x3 − 1) and mT (x) = lcm(x2 − 1, x3 − 1) =
x4 + x3 − x − 1. The invariant factors must be (x − 1), (x4 + x3 − x − 1), and the
rational canonical form is

RCF(T ) =

[

1 0 0 0 0
0 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 −1

]

,

which is not a permutation matrix. (Solution ends here.)
The discussion above shows that RCF(T ) is a permutation matrix iff τ can be

written as a product of disjoint cycles of lengths ℓ1, . . . , ℓk where ℓ1| · · · |ℓk.

Group 2.

3. Find the rational canonical form and the Jordan canonical form of

A =









2 −1 1 1
0 1 0 0

−1 0 0 −1
0 1 0 1









Solution. Since A−I has a zero row, 1 must be an eigenvalue for A. Let’s investigate
the Jordan blocks associated to eigenvalue 1.

If B := A − I, then B 6= 0 and B2 = 0. This proves that the minimal polynomial
of B is x2, so its invariant factors are either x, x, x2 or x2, x2. Since B has rank 2,
they are x2, x2. (The other choice would force rk(B) = rk(RCF(B)) = 1.) Hence the
invariant factors of A are (x− 1)2, (x− 1)2. These are prime powers, so they are also
the elementary divisors. It follows from this that
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RCF(A) =

[

0 −1 0 0
1 2 0 0
0 0 0 −1
0 0 1 2

]

, JCF(A) =

[

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

]

.

4. Show that the functor V 7→ V ∗, ϕ 7→ ϕ∗ is an exact functor from the category
of F-spaces to itself.

(Discussion) V 7→ V ∗ is a hom functor, hom functors are additive, and additive
functors preserve split exact sequences. Thus, it is enough to observe that any exact

sequence 0 → U
f
→ V

g
→ W → 0 of F-spaces splits. (End discussion.)

Solution 1. Choose a complement W ′ of f(U) in V . Then g|W ′ : W ′ → W is an
isomorphism, so s = (g|W ′)−1 is a section of g (meaning s : W → V and gs = idW ).
Exact sequences with a section are split.

Solution 2. All vector spaces are free, hence projective. But if W is projective, then
the sequence splits.

Solution 3. All vector spaces are injective. But if U is injective, then the sequence
splits.

Group 3.

5. Let R be the subring of Q whose elements are
{m

n
∈ Q | n odd

}

. R is a PID.

Describe the finitely generated torsion R-modules, and show that that are finite.

Solution. R is an integral domain, since it is a subring of Q. Every fraction m/n with
odd numerator and denominator is a unit in R, so every element of R is an associate
of a power of 2. This shows that every ideal is of the form (2k) (hence R is a PID).
A finitely generated torsion module is therefore of the form R/(2i1) ⊕ · · · ⊕ R/(2ir).

Claim. ϕ : Z2k = Z/(2k) → R/(2k) : z̄ → z̄ is a ring isomorphism.

Let ϕ be the composition of the unique ring homomorphism ϕ : Z → R with the
natural map ν : R → R/(2k). This homomorphism has kernel (2k) ⊆ Z, so the
induced map ϕ : Z/(2k) → R/(2k) is a ring embedding. If m/n ∈ R, then the
congruence nx ≡ m (mod 2k) is solvable in Z, since gcd(n, 2k) = 1. This means
that there exist x, y ∈ Z such that nx = m + 2ky, or x = m/n + 2ky/n in Q, or
x = m/n + (2k) in R. This shows that every element m/n ∈ R is congruent to an
element x ∈ ϕ(Z) modulo (2k), so ϕ is surjective.

Now, the R-module structure on R/(2k) is determined by a ring homomorphism
R → EndZ(R/(2k)) : r 7→ λr, and this homomorphism has kernel AnnR(R/(2k)) =

(2k), so it factors R
ν
→ R/(2k)

ρ
→ EndZ(R/(2k)) where ρ is the regular representation.
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Replacing R/(2k) by the isomorphic ring Z2k yields that the R module structure of
R on R/(2k) is isomorphic to the R-module structure on Z2k given by

R
ϕ
−1

◦ν
−→ Z2k

ρ′

−→ EndZ(Z2k),

where ρ′ describes the regular representation of Z2k . Examining the maps yields that
R acts on Z2k via (m/n)z̄ = m̄ · n̄−1 · z̄ in the ring Z2k .

We have fully described the addition and scalar multiplication of R on a cyclic
torsion module, and a general f.g. torsion module is a finite direct sum of cyclic ones.
The arguments show that any such module has size that is a finite power of 2.

6. Let R be an integral domain. For an R-module M and an element r ∈ R, let
M [r] = {m ∈ M | rm = 0}. Show that the mapping M 7→ M [r] is the object part of
a representable functor from the category of R-modules to itself.

Solution. Let F be the name of the functor mentioned. It suffices to find an R-
module A and, for each R-module M , an R-module isomorphism ηM : HomR(A, M) →
F (M) = M [r]. Then F can be defined on morphisms ϕ : M → N by F (ϕ) =
ηN ◦ ϕ∗ ◦ η−1

M . This will automatically make F a functor and (ηM) a natural isomor-
phism from HomR(A, ) to F .

The desired module is just A = 〈a | ra = 0〉 = R/(r). It follows from the universal
property of presentations that the functions in HomR(A, M) are in 1-1 correspndence
with the elements in M that satisfy the relation rx = 0. It is easy to check that the
module operations correspond, so the function ηM : HomR(A, M) → M [r] that maps
a function ϕ to its value at a, ϕ(a), is the desired isomorphism.

(In fact, the restriction of a homomorphism ϕ : M → N to the submodule M [r]
maps it into N [r], and F (ϕ) = ηN ◦ ϕ∗ ◦ η−1

M turns out to be ϕ|M [r].)


