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Name:

Do two of the problems. In order to receive full credit your answer must be
complete, legible and correct.

1. Let V be a variety, and suppose that A,B ∈ V are presented by 〈G | R〉
and 〈H | S〉 relative to V, respectively. Show that if G and H are disjoint, then
〈G ∪ H | R ∪ S〉 is a presentation of the coproduct of A and B relative to V. (Hint:
the first step should be to prove the existence of the coprojection homomorphisms.)

Notation. Let C = 〈G ∪H | R ∪ S〉. Also, since 〈G | R〉 = FV(G)/θ(R), let’s agree
to write g for g/θ(R) if g ∈ G. Use this ‘bar’ notation for any presentation to denote
the congruence class of a generator.

Solution. Since the generators G in C satisfy the relations in R, if follows from
the universal property of presentations, applied to 〈G | R〉, that the function G →
G∪H → C : g 7→ g 7→ g extends to a homomorphism i1 : A → C. There is a similar
homomorphism i2 : B → C. To show that 〈C; i1, i2〉 is a coproduct of A in B, consider
D ∈ V and homomorphisms ϕ1 : A → D and ϕ2 : B → D. The set ϕ1(G) satisfies
the relations ϕ1(R) in D, since ϕ1 is a homomorphism, and for the same reason
the set ϕ2(H) satisfies the relations ϕ2(S) in D. Hence the function ϕ1|G ∪ ϕ2|H
maps G ∪ H to elements of D that satisfy the relations ϕ1(R) ∪ ϕ2(S). By the
universal property of presentations, ϕ1|G ∪ ϕ2|H extends to a unique homomorphism
ϕ1 ⊔ϕ2 : C → D. Now, (ϕ1 ⊔ϕ2) ◦ i1 and ϕ1 both agree G, which is a generating set
for A, so (ϕ1 ⊔ ϕ2) ◦ i1 = ϕ1. Similarly, (ϕ1 ⊔ ϕ2) ◦ i2 = ϕ2. This establishes that
〈C; i1, i2〉 satisfies the universal property for the coproduct of A and B.

2. Let R be a commutative ring. Show that if M and N are finitely generated
(cyclic) R-modules, then so is M ⊗R N . Now suppose that R, S and T are not-
necessarily-commutative rings, that M is finitely generated (cyclic) as an (R, S)-
bimodule, N is finitely generated (cyclic) as an (S, T )-bimodule. Must the M ⊗S N
finitely generated (cyclic) as an (R, T )-bimodule?

Solution. If M is generated as an R-module by G and N is generated by H , then
it follows from the bilinearity of ⊗R and the fact that the left and right actions
of R on M and N are the same that M ⊗R N is generated as an R-module by
{g ⊗ h | (g, h) ∈ G × H}. This proves the first assertion.

The second assertion is false. If M = ZQQ and N = QQZ, then both are 1-generated
as bimodules, but M ⊗Q N = Q (as an abelian group/(Z, Z)-bimodule), and Q is not
finitely generated as an abelian group/(Z, Z)-bimodule.
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3. Which rings R have the property that all R-modules are free? (Hint: Make use
of a simple module, if possible.)

Solution. Zero rings have the property, because every module over a zero ring is
zero, hence free with zero generators. Division rings have the property because any
module over a division ring is a vector space, and from linear algebra we know that
every vector space has a basis. No other ring has the property.

To see this, note that, if a simple R-module S is free, then it must be free over
a 1-element set X = {x}, since minimal generating sets of simple modules have
size 1. If R 6= 0, then R has a simple module, and it is isomorphic to R/M where
M = Ann({x}) is a maximal left ideal of R. Now if m ∈ M − {0}, then mx = 0 is
a nontrivial relation satisfied by X, contradicting freeness unless M = {0}. But if
M = {0} for some maximal left ideal of R, then L = {0} for all proper left ideals of
R, which makes R a division ring. (To see this, choose any a ∈ R − {0}. L = Ra
is not zero, hence not proper, hence equals R, hence ra = 1 for some r ∈ R. This
proves that every nonzero a ∈ R has a left inverse, hence every element of R has a
2-sided inverse.)


