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CATEGORIES, FUNCTORS, UNIVERSAL ARROWS

A category is an algebraic model of a collection of mathematical structures (objects)
equipped with structure preserving mappings (morphisms).

Definition 1. (Category) A category is a structure

C = 〈O, M ; ◦, id, dom, cod〉

where

(1) Ob(C) = O is a class whose members are called objects,
(2) Mor(C) = M is a class whose members are called morphisms,
(3) ◦ : M × M → M is a binary partial operation called composition,
(4) id : O → M is a unary function assigning to each object A ∈ O a morphism

idA called the identity of A,
(5) dom, cod : M → O are unary functions assigning to each morphism f objects

called the domain and codomain of f respectively.

The laws defining categories are:

(1) f ◦ g exists if and only if dom(f) = cod(g).
(2) Composition is associative when it is defined.
(3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f).
(4) If A = dom(f) and B = cod(f), then f ◦ idA = f and idB ◦ f = f .
(5) dom(idA) = cod(idA) = A.

We will say that a category is small if M is a set. (This forces O to be a set, too.)

Notation. We let HomC(A, B) denote the class of f ∈ M for which dom(f) = A

and cod(f) = B. It is common to add to the definition of a category the assumption
that HomC(A, B) is a set for all A, B ∈ O. (I will always assume this.)

Examples.

(1) If V is a variety or prevariety of algebras, then V may be thought of as a
category whose objects are the algebras in V and whose morphisms are the
homomorphisms between members of V.

(2) If 〈P ;≤〉 is a partially ordered set, then the elements of P may be thought
of as the objects of a category whose morphisms are the arrows a → b where
a ≤ b in P .

(3) If 〈M ; ◦, 1〉 is a monoid, then M determines a one-object category

M = 〈{∗}, M ; ◦, 1, dom, cod〉

where dom, cod : M → {∗} are both the constant function.
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Since the definition of a category is so close to that of an algebra, it is natural to try
to compare categories with homomorphisms. These are called “covariant functors”.

Definition 2. (Functor) A covariant functor F : C → D is a homomorphism from C
to D. Precisely, F is a pair of mappings, both called F , between object classes and
morphism classes, F : Ob(C) → Ob(D) and F : Mor(C) → Mor(D), where

(1) F (f ◦ g) = F (f) ◦ F (g),
(2) F (idA) = idF (A),
(3) F (dom(f)) = dom(F (f)), and
(4) F (cod(f)) = cod(F (f)).

A contravariant functor F : C → D is an antihomomorphism (a composition re-
versing mapping) from C to D. That is, F : Ob(C) → Ob(D), F : Mor(C) → Mor(D),
and

(1) F (f ◦ g) = F (g) ◦ F (f),
(2) F (idA) = idF (A),
(3) F (dom(f)) = cod(F (f)), and
(4) F (cod(f)) = dom(F (f)).

Examples.

(1) Let C be any category, and let A ∈ Ob(C) be any object in C. The covariant

hom functor represented by A is the covariant functor F : C → SET whose be-
havior on objects is F (X) = HomC(A, X) and whose behavior on morphisms
is F (f) = left composition with f .

(2) The contravariant hom functor represented by A is the contravariant functor
F : C → SET whose behavior on objects is F (X) = HomC(X, A) and whose
behavior on morphisms is F (f) = right composition with f .

(3) If we consider posets P and Q to be categories (as earlier), then a function
from P to Q is a covariant functor if it is order-preserving and is a contravari-
ant functor if it is order-reversing.

(4) If we consider monoids M and N as one-object categories, then a covariant
functor from M to N is a monoid homomorphism.

(5) A functor is faithful if it is injective on both objects and morphisms. A
concrete category is a pair (C, U) where C is a category and U : C → SET is a
faithful functor to the category of sets. U provides a way to view the objects
of C as having underlying sets and morphisms as being set-maps.

If F : C → D is a functor, and X is an object of D, then it may happen that there
is a “best projection” of X onto the image of F . This best projection consists of an
object A of C and a morphism π : X → F (A) projecting X to the image of F , which
satisfy a property saying that (A, π) is best.
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Definition 3. (Universal morphism) Given a functor F : C → D and an object X of
D, a universal morphism from X to F is a pair (A, π) such that π : X → F (A), and
whenever ρ : X → F (B) there is a unique σ : A → B such that ρ = F (σ) ◦ π.

Similarly, a universal morphism from F to X is a pair (A, π) such that π : F (A) →
X, and whenever ρ : F (B) → X there is a unique σ : B → A such that ρ = π ◦F (σ).

Similar definitions can be made for contravariant functors.

The statement that some universal property holds is the statement that a certain
pair (A, π) is a universal morphism.

Exercise.

(1) Show that universal morphisms are unique up to unique isomorphism.

Examples.

(1) Let ∆: C → C × C be the diagonal functor (A 7→ (A, A) and ϕ 7→ (ϕ, ϕ)). A
universal morphism from ∆ to an object (B, C) of C ×C is a pair (P, (π1, π2))
where (π1, π2) : (P, P ) → (B, C) is universal; this means exactly that P is
a product of B and C and that π1 and π2 are the projection maps of the
product. The universal property of products is the statement that (P, (π1, π2))
is a universal morphism.

(2) A universal morphism from (B, C) to ∆ is a pair (D, (i1, i2)) where D is the
coproduct of B and C and i1 and i2 are the coprojections. The universal
property of coproducts is the statement that (D, (i1, i2)) is a universal mor-
phism.

(3) If P is a prevariety, then a universal morphism from a set X to the natural
forgetful functor U : P → SET is a pair (F (X),⊆) where F (X) is the under-
lying set of a free algebra over X and ⊆ : X → F (X) is inclusion of generators.
The universal property of free algebras is the statement that (F (X),⊆) is a
universal morphism.

(4) Let VF be the category of F-vector spaces. For objects U and V if this category,
let H : VF → SET be the functor that assigns to W the set of bilinear maps
Bilin(U × V, W ). There is a universal morphism from the 1-point set to H :
(U ⊗ V, β) where β(∗) is the insertion of simple tensors µ : U × V → U ⊗ V .


