Practice Sheet F

1. Let $f(x)$ be a continuous function on $[0,1]$ and $f(0)=f(1)=0$. Let $0<\alpha<1$. Show that there exist x, y in $[0,1]$ such that $f(x)=f(y)$ and $x-y$ is either α or $1-\alpha$.
2. A circle with the center $(a, 1 / a)$ intersects the hyperbola $x y=1$ at the points A, B, C and D. Given that the triangle $A B C$ is equilateral, find the coordinates of the point D.
3. Let f be a continuously differentiable function on $[0,1]$ such that $f(0)=0, f(1)=1$. Show that

$$
\int_{0}^{1}\left|f^{\prime}(x)-f(x)\right| d x \geq \frac{1}{e}
$$

4. Suppose that $n>1$ and that $P\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a polynomial in n variables of degree at most n. Assume that for every positive M the set of n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of integer numbers for which

$$
\left|P\left(x_{1}, x_{2}, \ldots x_{n}\right)\right| \leq M
$$

is finite. Show that P is not divisible by any linear form $L\left(x_{1}, \ldots, x_{n}\right)=$ $c_{1} x_{1}+\cdots+c_{n} x_{n}$.
5. Let $f(x)$ be a positive continuous function, periodic with the period

1. Show that for any α

$$
\int_{0}^{1} \frac{f(x)}{f(x+\alpha)} d x \geq 1
$$

6. Let $f(x)$ be a continuous function such that for every 4 -term arithmetic progression a, b, c, d

$$
|f(d)-f(a)| \geq \pi|f(c)-f(b)| .
$$

Show that f is constant.

