Practice Sheet E

1. Find all solutions to $\sqrt[3]{(x-1)}+\sqrt[3]{(x-2)}+\sqrt[3]{(x+3)}=0$.
2. Is there a rational number such that by cancelling some digits of its decimal form, the digits of π are left?
3. Solve the simultaneous equations $\{x\}=\left\{x^{2}\right\}=\left\{x^{3}\right\}$ (where $\{y\}$ denotes the fractional part of the number y, obtained by subtracting from y the greatest integer not greater than y).
4. Evaluate $\sum_{k=1}^{\infty} \frac{1}{k \sqrt{k+2}+(k+2) \sqrt{k}}$.
5. Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers $c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+$ $c_{n-2} r, \ldots, c_{n} r^{n}+c_{n-1} r_{n-1}+\cdots+c_{1} r$ are integers.
6. Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola $x y=1$ and both branches of the hyperbola $x y=-1$. (A set S in the plane is called convex if for any two points in S the line segment connecting them is contained in S.)
7. Let n be a positive integer. Find the number of pairs (P, Q) of polynomials with real coefficients such that $(P(x))^{2}+(Q(x))^{2}=x^{2 n}+1$ and $\operatorname{deg}(P)>\operatorname{deg}(Q)$.
