Practice Sheet D

1. Let n be a positive integer. What are the possible values of

$$
\operatorname{gcd}\left(n^{2}+1,(n+1)^{2}+1\right) ?
$$

2. Show that if three points are inside a closed unit square, then two of them lie within $\sqrt{6}-\sqrt{2}$ units of each other.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(g(x))=g(f(x))$ holds for every polynomial g with real coefficients. Determine the nature of f.
4. For a fixed positive integer n let x_{1}, \ldots, x_{n} be real numbers satisfying $0 \leq x_{i} \leq 1$. Determine the maximum possible value of

$$
\sum_{1 \leq i<j \leq n}\left|x_{i}-x_{j}\right|
$$

5. Assume that $|f(x)| \leq 1$ and $\left|f^{\prime \prime}(x)\right| \leq 1$ for all x on some interval of length 2. Show that $\left|f^{\prime}(x)\right| \leq 2$ on the interval.
6. Find polynomials f, g, h, if they exist, such that for all x

$$
|f(x)|-|g(x)|+h(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<-1 \\
3 x+2 & \text { if }-1 \leq x \leq 0 \\
-2 x+2 & \text { if } 0<x
\end{array}\right.
$$

7. Let $P(x)$ be a polynomial of degree n such that $P(x)=Q(x) P^{\prime \prime}(x)$, where Q is a quadratic polynomial. Show that if P has at least 2 distinct complex roots, then P has n distinct complex roots.
