Practice Sheet A

1. Let n be a positive integer. Prove that $x^{n}-\frac{1}{x^{n}}$ is expressible as a polynomial in $x-\frac{1}{x}$ with real coefficients iff n is odd.
2. A function $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$from the positive integers to itself is strictly increasing if $m<n$ implies $f(m)<f(n)$ and is multiplicative if $f(m n)=f(m) f(n)$ whenever m and n are relatively prime. Show that if f is strictly increasing, multiplicative, and satisfies $f(2)=2$, then f satisfies $f(n)=n$ for all n.
3. Given a strictly increasing sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive integers, set b_{n} equal to the least common multiple of $\left\{a_{1}, \ldots, a_{n}\right\}$. Show that $\sum_{n=1}^{\infty} \frac{1}{b_{n}}$ converges.
4. Find all complex-valued functions f of a complex variable z such that $f(z)+z f(1-z)=1+z$ holds for all z.
5. Show that the unit disk in the plane cannot be partitioned into two congruent disjoint subsets.
6. Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that x_{0}, x_{1}, \ldots are positive real numbers for which $\sum_{j=0}^{\infty} x_{j}=A$?
7. Find all twice differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ for which

$$
(f(x)+f(y))(f(x)-f(y))=f(x+y) f(x-y)
$$

holds for all real x and y.

