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Abstract. The theory of multitraces provides a new proof that any simple tournament
with more than two elements is functionally complete.

A tournament is a finite, directed, complete graph 〈V ;E〉 without multiple edges.
Write x → y to indicate that x, y ∈ V and (x, y) ∈ E. In this paper tournaments
have loops on all vertices, so x → x for all x ∈ V . Associate to a tournament 〈V ;E〉
an algebra 〈V ; ·〉 with the same universe and a binary product defined by xy = x
iff x → y. Such an algebra is also called a tournament.

In [5], P. P. Pálfy applied Rosenberg’s Completeness Theorem to prove that every
simple tournament is functionally complete. Here we derive the same theorem from
the theory of multitraces, [3], which is a part of tame congruence theory, [1].

A finite algebra A is functionally complete if every finitary operation on its
universe is a polynomial of the algebra. A trace of a finite simple algebra A is a
subset of A that is minimal among subsets T ⊆ A satisfying |T | > 1 and T = e(A)
for some unary polynomial e satisfying e(e(x)) = e(x). A multitrace of a finite
simple algebra A is a subset M ⊆ A such that M = p(T, T, . . . , T ) = p(Tn) for
some trace T and some n-ary polynomial p. It is known that if A is a finite simple
algebra and T and T ′ are traces, then there are unary polynomials f and g such that
f(T ) = T ′ and g(T ′) = T , so any trace can be used in the definition of “multitrace”.
It is also known that if T is a trace and f is a unary polynomial whose restriction
to T is nonconstant, then f(T ) is another trace.

It is possible to construct an algebra on a trace T = e(A) by equipping T
with (the restrictions to T of) all operations of the form e(p(x)), p a polynomial
operation of A. The result is called the algebra A induces on T , and is denoted
A|T . It is shown in [1] that the algebras A|T arising from different traces of A
are polynomially equivalent algebras, and that they come in only five types, which
are numbered 1 − 5. Their polynomial equivalence types are: 1 = simple G-sets,
2 = 1-dimensional vector spaces, 3 = 2-element Boolean algebras, 4 = 2-element
lattices, and 5 = 2-element semilattices.

The following specialization of Theorem 3.12 of [3] provides criteria for estab-
lishing functional completeness.

Theorem 1. A finite algebra S is functionally complete if and only if
(1) S is simple of type 3, and
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(2) S is a multitrace.

Lemma 2. A simple tournament with more than two elements has type 3.

Proof. Theorem 33 of [2] states that any finite simple algebra in the variety gener-
ated by tournaments is itself a tournament. The proof starts with a short argument
that all finite simple algebras in this variety have type 3,4, or 5. Most of the rest
of the proof is an argument that this variety contains no simple algebra of type 5
that has more than two elements. This argument works for finite simple algebras of
type 4 as well, and proves that there are no simple tournaments of type 4. Hence
any simple tournament with more than two elements has type 3. �

Lemma 3. Let S be a simple tournament with more than two elements.
(1) S contains a multitrace M and an element z such that M ∪ {z} is strongly

connected and |M ∪ {z}| > 1.
(2) If M is any multitrace of S and M∪{z} is strongly connected, then M∪{z}

is also a multitrace.
(3) If M is a strongly connected multitrace and 1 < |M | < |S|, then there is an

element z ∈ S −M such that M ∪ {z} is strongly connected.

Proof. For (1), choose any trace T = {0, 1} with elements labeled so that 0 → 1.
Since S|T is a 2-element Boolean algebra, there is a unary polynomial p(x) inducing
Boolean complementation on T . This polynomial restricted to T does not respect →
in the sense that 0 → 1 but p(0) 6→ p(1). The constant polynomials and the identity
polynomial do respect → in this sense, so there must exist a unary polynomial
f(x) = g(x) · h(x) such that g(0) → g(1) and h(0) → h(1), but f(0) 6→ f(1). Since
f(0) = g(0) · h(0) we have f(0) ∈ {g(0), h(0)}, and similarly f(1) ∈ {g(1), h(1)},
but (f(0), f(1)) 6= (g(0), g(1)) or (h(0), h(1)) since f does not preserve → while
both g and h do. Hence (f(0), f(1)) = (g(0), h(1)) or (h(0), g(1)). The cases are
symmetric, so consider the case (f(0), f(1)) = (g(0), h(1)), which is depicted in
Figure 1.
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Figure 1

The directions on the nonhorizontal arrows follow from the assumptions that 0 → 1
and g and h respect → while f does not. The directions on the horizontal arrows
follow from g(0) = f(0) = g(0) · h(0) → h(0) and h(1) = f(1) = g(1) · h(1) → g(1).
Significantly, {g(0), h(0), h(1)} is a directed →-cycle, implying that these three
elements are distinct. Since M := {h(0), h(1)} is a 2-element image of a trace T
under a polynomial, M is a (multi)trace. For z = g(0) we get that our directed →-
cycle is M ∪ {z}, which is strongly connected and contains more than one element.
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For (2), note that if A = p(Tm) and B = q(Tn) are multitraces, then the complex
product AB = {ab | a ∈ A, b ∈ B} is also a multitrace, since AB = r(Tm+n) for
r(xy) = p(x)·q(y). Moreover, any singleton set is a multitrace, being the image of a
constant unary polynomial. Thus, if M is a multitrace, so are the complex products
M{z},M(M{z}),M(M(M{z})), etc. We argue that this is an increasing sequence
of sets which terminates at M ∪ {z} whenever M ∪ {z} is strongly connected.

Since M ∪{z} is strongly connected, there exists m ∈ M −{z} such that z → m,
equivalently z = mz. Thus, {z} ⊆ M{z}. Multiplying both sides of this inclusion
by M repeatedly yields M{z} ⊆ M(M{z}) = M2{z}, then M2{z} ⊆ M3{z}, etc.
Thus the multitraces M i{z} increase with i. They are contained in M ∪ {z} since
this set is a subalgebra of S. If X :=

⋃
i M i{z}, then X = M j{z} for some large

j, which makes X a multitrace. By construction we have MX = X, so there is no
directed edge from M −X into X. Since z ∈ X, there can be no directed edge from
the smaller set (M ∪ {z}) − X into X either. But M ∪ {z} is strongly connected
and X is a nonempty subset, so this forces M ∪ {z} = X = a multitrace.

For (3), we use the simplicity criterion for tournaments from [4] (Proposition 4):
a tournament S is simple iff for every subset M satisfying 1 < |M | < |S| there is
an element z ∈ S −M and elements a, b ∈ M such that a → z → b. This produces
the element z we need in (3): M is strongly connected and z is connected to and
from M through a and b, so M ∪ {z} is also strongly connected. �

Items (1) and (2) of this lemma produce a nontrivial strongly connected multi-
trace, while items (2) and (3) allow one to grow this multitrace without restriction
until we reach S. Together with Theorem 1 and Lemma 2, we get the desired result.

Theorem 4. A simple tournament with more than two elements is functionally
complete.
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