On the functional completeness of simple tournaments

Keith A. Kearnes

ABSTRACT. The theory of multitraces provides a new proof that any simple tournament with more than two elements is functionally complete.

A tournament is a finite, directed, complete graph $\langle V; E \rangle$ without multiple edges. Write $x \to y$ to indicate that $x, y \in V$ and $(x, y) \in E$. In this paper tournaments have loops on all vertices, so $x \to x$ for all $x \in V$. Associate to a tournament $\langle V; E \rangle$ an algebra $\langle V; \cdot \rangle$ with the same universe and a binary product defined by xy = x iff $x \to y$. Such an algebra is also called a tournament.

In [5], P. P. Pálfy applied Rosenberg's Completeness Theorem to prove that every simple tournament is functionally complete. Here we derive the same theorem from the theory of multitraces, [3], which is a part of tame congruence theory, [1].

A finite algebra \mathbf{A} is functionally complete if every finitary operation on its universe is a polynomial of the algebra. A trace of a finite simple algebra \mathbf{A} is a subset of A that is minimal among subsets $T \subseteq A$ satisfying |T| > 1 and T = e(A)for some unary polynomial e satisfying e(e(x)) = e(x). A multitrace of a finite simple algebra \mathbf{A} is a subset $M \subseteq A$ such that $M = p(T, T, \ldots, T) = p(T^n)$ for some trace T and some n-ary polynomial p. It is known that if \mathbf{A} is a finite simple algebra and T and T' are traces, then there are unary polynomials f and g such that f(T) = T' and g(T') = T, so any trace can be used in the definition of "multitrace". It is also known that if T is a trace and f is a unary polynomial whose restriction to T is nonconstant, then f(T) is another trace.

It is possible to construct an algebra on a trace T = e(A) by equipping T with (the restrictions to T of) all operations of the form $e(p(\mathbf{x}))$, p a polynomial operation of \mathbf{A} . The result is called *the algebra* \mathbf{A} *induces on* T, and is denoted $\mathbf{A}|_T$. It is shown in [1] that the algebras $\mathbf{A}|_T$ arising from different traces of \mathbf{A} are polynomially equivalent algebras, and that they come in only five types, which are numbered $\mathbf{1} - \mathbf{5}$. Their polynomial equivalence types are: $\mathbf{1} = \text{simple } G$ -sets, $\mathbf{2} = 1$ -dimensional vector spaces, $\mathbf{3} = 2$ -element Boolean algebras, $\mathbf{4} = 2$ -element lattices, and $\mathbf{5} = 2$ -element semilattices.

The following specialization of Theorem 3.12 of [3] provides criteria for establishing functional completeness.

Theorem 1. A finite algebra **S** is functionally complete if and only if

(1) **S** is simple of type $\mathbf{3}$, and

1

¹⁹⁹¹ Mathematics Subject Classification: 08A40.

Key words and phrases: tournament, multitrace, tame congruence theory.

(2) S is a multitrace.

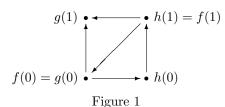
Lemma 2. A simple tournament with more than two elements has type 3.

Proof. Theorem 33 of [2] states that any finite simple algebra in the variety generated by tournaments is itself a tournament. The proof starts with a short argument that all finite simple algebras in this variety have type $\mathbf{3}, \mathbf{4}$, or $\mathbf{5}$. Most of the rest of the proof is an argument that this variety contains no simple algebra of type $\mathbf{5}$ that has more than two elements. This argument works for finite simple algebras of type $\mathbf{4}$ as well, and proves that there are no simple tournaments of type $\mathbf{4}$. Hence any simple tournament with more than two elements has type $\mathbf{3}$.

Lemma 3. Let S be a simple tournament with more than two elements.

- (1) **S** contains a multitrace M and an element z such that $M \cup \{z\}$ is strongly connected and $|M \cup \{z\}| > 1$.
- (2) If M is any multitrace of **S** and $M \cup \{z\}$ is strongly connected, then $M \cup \{z\}$ is also a multitrace.
- (3) If M is a strongly connected multitrace and 1 < |M| < |S|, then there is an element $z \in S M$ such that $M \cup \{z\}$ is strongly connected.

Proof. For (1), choose any trace $T = \{0, 1\}$ with elements labeled so that $0 \to 1$. Since $\mathbf{S}|_T$ is a 2-element Boolean algebra, there is a unary polynomial p(x) inducing Boolean complementation on T. This polynomial restricted to T does not respect \to in the sense that $0 \to 1$ but $p(0) \not\rightarrow p(1)$. The constant polynomials and the identity polynomial do respect \to in this sense, so there must exist a unary polynomial $f(x) = g(x) \cdot h(x)$ such that $g(0) \to g(1)$ and $h(0) \to h(1)$, but $f(0) \not\rightarrow f(1)$. Since $f(0) = g(0) \cdot h(0)$ we have $f(0) \in \{g(0), h(0)\}$, and similarly $f(1) \in \{g(1), h(1)\}$, but $(f(0), f(1)) \neq (g(0), g(1))$ or (h(0), h(1)) since f does not preserve \to while both g and h do. Hence (f(0), f(1)) = (g(0), h(1)) or (h(0), g(1)). The cases are symmetric, so consider the case (f(0), f(1)) = (g(0), h(1)), which is depicted in Figure 1.



The directions on the nonhorizontal arrows follow from the assumptions that $0 \to 1$ and g and h respect \to while f does not. The directions on the horizontal arrows follow from $g(0) = f(0) = g(0) \cdot h(0) \to h(0)$ and $h(1) = f(1) = g(1) \cdot h(1) \to g(1)$. Significantly, $\{g(0), h(0), h(1)\}$ is a directed \to -cycle, implying that these three elements are distinct. Since $M := \{h(0), h(1)\}$ is a 2-element image of a trace Tunder a polynomial, M is a (multi)trace. For z = g(0) we get that our directed \to cycle is $M \cup \{z\}$, which is strongly connected and contains more than one element.

 $\mathbf{2}$

For (2), note that if $A = p(T^m)$ and $B = q(T^n)$ are multitraces, then the complex product $AB = \{ab \mid a \in A, b \in B\}$ is also a multitrace, since $AB = r(T^{m+n})$ for $r(\mathbf{xy}) = p(\mathbf{x}) \cdot q(\mathbf{y})$. Moreover, any singleton set is a multitrace, being the image of a constant unary polynomial. Thus, if M is a multitrace, so are the complex products $M\{z\}, M(M\{z\}), M(M(M\{z\}))$, etc. We argue that this is an increasing sequence of sets which terminates at $M \cup \{z\}$ whenever $M \cup \{z\}$ is strongly connected.

Since $M \cup \{z\}$ is strongly connected, there exists $m \in M - \{z\}$ such that $z \to m$, equivalently z = mz. Thus, $\{z\} \subseteq M\{z\}$. Multiplying both sides of this inclusion by M repeatedly yields $M\{z\} \subseteq M(M\{z\}) = M^2\{z\}$, then $M^2\{z\} \subseteq M^3\{z\}$, etc. Thus the multitraces $M^i\{z\}$ increase with i. They are contained in $M \cup \{z\}$ since this set is a subalgebra of **S**. If $X := \bigcup_i M^i\{z\}$, then $X = M^j\{z\}$ for some large j, which makes X a multitrace. By construction we have MX = X, so there is no directed edge from M - X into X. Since $z \in X$, there can be no directed edge from the smaller set $(M \cup \{z\}) - X$ into X either. But $M \cup \{z\}$ is strongly connected and X is a nonempty subset, so this forces $M \cup \{z\} = X =$ a multitrace.

For (3), we use the simplicity criterion for tournaments from [4] (Proposition 4): a tournament **S** is simple iff for every subset M satisfying 1 < |M| < |S| there is an element $z \in S - M$ and elements $a, b \in M$ such that $a \to z \to b$. This produces the element z we need in (3): M is strongly connected and z is connected to and from M through a and b, so $M \cup \{z\}$ is also strongly connected. \Box

Items (1) and (2) of this lemma produce a nontrivial strongly connected multitrace, while items (2) and (3) allow one to grow this multitrace without restriction until we reach S. Together with Theorem 1 and Lemma 2, we get the desired result.

Theorem 4. A simple tournament with more than two elements is functionally complete.

References

- D. Hobby and R. McKenzie, The structure of finite algebras. Contemporary Mathematics 76, American Mathematical Society, Providence, RI, 1988.
- J. Ježek, P. Marković, M. Maróti, and R. McKenzie, The variety generated by tournaments, Acta Univ. Carolinae 40 (1999), 21–41.
- [3] K. A. Kearnes, E. W. Kiss, M. A. Valeriote, *Minimal sets and varieties*, Trans. Amer. Math. Soc. **350**, no. 1, (1998), 1–41.
- [4] V. Müller, J. Nešetřil, J. Pelant, Either tournaments or algebras?, Discrete Math. 11 (1975), 37–66.
- [5] P. P. Pálfy, Some functionally complete minimal clones, Acta Sci. Math. 73 (2007), no. 3-4, 487-495.

(Keith A. Kearnes) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, CO 80309-0395, USA

E-mail address: kearnes@euclid.colorado.edu