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CARDINALITIES OF RESIDUE FIELDS
OF NOETHERIAN INTEGRAL DOMAINS

Keith A. Kearnes1 and Greg Oman2
1Department of Mathematics, University of Colorado,
Boulder, Colorado, USA
2Department of Mathematical Sciences, Otterbein College,
Westerville, Ohio, USA

We determine the relationship between the cardinality of a Noetherian integral domain
and the cardinality of a residue field. One consequence of the main result is that
it is provable in Zermelo–Fraenkel Set Theory with Choice (ZFC) that there is a
Noetherian domain of cardinality ℵ1 with a finite residue field, but the statement
“There is a Noetherian domain of cardinality ℵ2 with a finite residue field” is
equivalent to the negation of the Continuum Hypothesis.

Key Words: Generalized continuum hypothesis; Integral domain; Noetherian ring; Prime spectrum;
Residue field.
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1. INTRODUCTION

Let R be a commutative Noetherian ring, and suppose that M1� � � � �Mn are
finitely many of the maximal ideals of R. The only general relationships that hold
among the cardinals �R�� �R/M1�� � � � � �R/Mn� are that:

(i) Each �R/Mi� must be a prime power or infinite (since it is the size of a field);
(ii) �R� must be at least as large as

∏ �R/Mi� (since �R� ≥ �R/⋂Mi� =
∏ �R/Mi�);

and
(iii) If R is finite, then �R� is divisible by

∏ �R/Mi� (same reason as in (ii)).

One sees that no other relationships hold by considering the case where R is a finite
product of fields of appropriate cardinalities.

Now drop the condition that R is Noetherian and add the condition that
R is an integral domain. Again there are no interesting relationships between the
cardinals �R�, �R/M1�� � � � � �R/Mn�. If R is finite, then R is a field, n = 1, and �R� =
�R/M1� is a prime power. If �R� is to have infinite cardinality �, then we can take R =
��X�, where X is a set of � indeterminates. Such a ring has many homomorphisms
onto fields of cardinality � for any � ≤ � that is a prime power or is infinite. Thus R
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CARDINALITIES OF RESIDUE FIELDS 3581

has maximal ideals M1� � � � �Mn such that �R/Mi� = �i for any sequence of cardinals
��1� � � � � �n�, where each �i is a prime power or is infinite and dominated by �.

The situation when R is both Noetherian and an integral domain is different.
Either R is a finite field, or else the following is true: if �R� = � and �R/Mi� = �i, then
as before each �i must be a prime power or infinite, but now it must be that

�i + ℵ0 ≤ � ≤ �
ℵ0
i (1.1)

for each i. We explain why this must hold in Lemma 2.1. We shall show conversely
that if ��� �1� � � � � �n� is any finite sequence of cardinals satisfying (1.1) for each i,
and satisfying the condition that each �i is a prime power or is infinite, then there is
a Noetherian integral domain R of cardinality � that has exactly n maximal ideals
whose residue fields satisfy �R/Mi� = �i, 1 ≤ i ≤ n.

All of the arguments needed to support the statements made in the previous
paragraph appear in the articles of Shah [6, 7]. However, Shah draws the wrong
conclusions from these arguments, because she assumes that �ℵ0 = � whenever �
exceeds the size of the continuum. This error in cardinal arithmetic leads Shah
to conclude that a Noetherian domain R of size larger than the continuum has
the property that any residue field R/M has the same size as R (not true), hence
all residue fields have the same size as each other (also not true). This erroneous
conclusion invalidates her description of Spec�R�x�� when R is a semilocal domain
of dimension 1.

We tried to locate Shah to inform her of the error and found that, sadly, she
passed away in 2005. Since no correction to her articles exists in the literature and
her work is still being referenced (cf. [2]), and since this error concerns a very basic
property of rings, we felt it necessary to record the corrections.

2. CORRECTIONS CONCERNING CARDINALITY

In this article, all rings are commutative with 1.

Lemma 2.1. Let R be a Noetherian integral domain that is not a finite field, and let I
be a proper ideal of R. If �R� = � and �R/I� = �, then � + ℵ0 ≤ � ≤ �ℵ0 �

Proof. If R is an integral domain that is not a finite field, then R must be infinite,
so � ≥ ℵ0. Combining this with the inequality � = �R� ≥ �R/I� = �, we obtain that
� ≥ max�ℵ0� �� = � + ℵ0. This is the lefthand inequality of the conclusion of the
lemma.

For each finite n, the R/I-module In/In+1 is Noetherian, hence is generated
by some finite number of elements, say f�n� elements. The module In/In+1 is a
quotient of a free R/I-module on f�n� generators, so �In/In+1� ≤ �R/I�f�n�. This
yields �R/Im� = �R/I� · �I/I2� · · · �Im−1/Im� ≤ �R/I�F�m� = �F�m�, where F�m� = f�0�+
· · · + f�m− 1� is some finite number.

The product map 	 
 R → ∏
m∈� R/Im induced by the natural maps in each

coordinate has kernel
⋂

m∈� Im. Since R is a Noetherian integral domain, the Krull
Intersection Theorem guarantees that this kernel is zero. Hence 	 is injective, and we
have � = �R� ≤ ∏

m∈� �R/Im� ≤
∏

m∈� �F�m� = �
∑

m∈� F�m� ≤ �ℵ0 , which is the righthand
inequality of the conclusion of the lemma. �
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3582 KEARNES AND OMAN

We are interested in the case of Lemma 2.1 where R/I is a residue field, hence
�R/I� = � is a prime power or is infinite. In this case, there is an easy converse to
Lemma 2.1.

Lemma 2.2. Suppose that � and � are cardinals satisfying � + ℵ0 ≤ � ≤ �ℵ0� and
that � is a prime power or is infinite. There is a Noetherian integral domain R with a
maximal ideal M such that �R� = � and �R/M� = �.

Proof. Let F be a field of cardinality �, and let F��t�� be the ring of formal power
series over F in the variable t. The underlying set of F��t�� is the set of all functions
from � into F , whence �F��t��� = �ℵ0 . The quotient field of F��t�� is the field F��t��
of formal Laurent series in the variable t. There is a field K of cardinality �
such that F�t� ⊆ K ⊆ F��t�� for any � satisfying �F�t�� = � + ℵ0 ≤ � ≤ �ℵ0 = �F��t���.
Note that F��t�� is a discrete valuation ring (DVR) on F��t��, K ⊆ F��t��, and F��t�� ∩
K is not a field (since t is not invertible). It follows that F��t�� ∩ K is a DVR on K
(whence also has cardinality �) with maximal ideal M = �t� ∩ K. Clearly, F maps
injectively into �F��t�� ∩ K�/M and �F��t�� ∩ K�/M maps injectively into F��t��/�t� 	 F .
It follows that ��F��t�� ∩ K�/M� = � and the proof is complete. �

Remark 2.3. Here is an alternative proof of Lemma 2.2: Suppose that R is any
elementary subring of F��t�� (i.e., a subring where every first-order sentence with
parameters from R that is true in R is also true in F��t��). If F�t� ⊆ R ⊆ F��t��, then it is
not hard to see that such an R must be a DVR with maximal ideal M = R ∩ �t� and
with residue field isomorphic to F . Hence R is a Noetherian integral domain with
a maximal ideal M such that and �R/M� = �F � = �. The Downward Löwenheim–
Skolem Theorem guarantees the existence of rings R satisfying F�t� ⊆ R ⊆ F��t��, R
an elementary subring of F��t��, and �R� = � for any � satisfying �F�t�� = � ≤ � ≤
�ℵ0 = �F��t���.

In more detail, for countable first-order languages L, the Downward
Löwenheim–Skolem Theorem guarantees that if A is an infinite subset of an L-
structure B, then A can be enlarged to an elementary substructure A′ of B without
altering its cardinality (�A� = �A′�). Apply this to any set A satisfying F�t� ⊆ A ⊆
F��t�� =
 B and �A� = � to produce the desired ring R.

Corrections 2.4. Lemma 2.5 of [6] and Lemma 2.1 of [7] are versions of
Lemma 2.1 from above, although they are stated only in the case where R is a
Noetherian local domain and I = M is a maximal ideal of R. The proofs of all
three are essentially the same, although the important inequality � + ℵ0 ≤ � ≤ �ℵ0

does not appear in [6] or [7]. Instead, the lemmas from [6, 7] assert that �R� ≤
sup��R/M�� �� and that, if �R� > �, then �R� = �R/M�. (Here � = 2ℵ0 is the cardinality
of the continuum.) These assertions are incorrect, as Lemma 2.2 witnesses.

Corollary 2.2 to Lemma 2.1 of [7] asserts that if R is a Noetherian ring of
size larger than the continuum, then comparable prime ideals have the same index
(i.e., if P ⊆ M are both prime, then �R/P� = �R/M�). This corollary is derived from
Lemma 2.1 of [7] by factoring by P, localizing at the prime M/P, and then applying
the incorrect lemma to the resulting Noetherian local domain. This corollary is also
incorrect, as our Lemma 2.2 witnesses. (Take R and M to be as in that lemma and
take P = �0�.)
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Remark 2.5. If � is finite, then the inequality � + ℵ0 ≤ � ≤ �ℵ0 from Lemma 2.1
reduces to

ℵ0 ≤ � ≤ 2ℵ0� (2.1)

while if � is infinite it reduces to

� ≤ � ≤ �ℵ0 � (2.2)

It follows from (2.1) that the set of possible cardinalities of an infinite
Noetherian integral domain with a finite residue field depends on the cardinality
of the continuum, i.e., the value of � for which ℵ� = 2ℵ0 . There exist models of
ZFC showing that 2ℵ0 can equal any ℵ� of uncountable cofinality, hence the interval
�ℵ0� 2

ℵ0 � can be as large as desired.
It follows from (2.2) that the set of possible cardinalities of a Noetherian

integral domain with an infinite residue field of size � depends on the size of the
interval ��� �ℵ0 �. Here are some remarks about the possible sizes of this interval.
For these remarks, the notation �+ denotes the successor of cardinal �. (That is,
if � = ℵ�, then �+ = ℵ�+1.) The Continuum Hypothesis (CH) is the assumption 2ℵ0 =
ℵ+
0 . The Generalized Continuum Hypothesis (GCH) is the assumption 2� = �+ for all

infinite �. Both are known to be independent of ZFC.

(1) (It is provable in ZFC that the interval ��� �ℵ0 � is trivial arbitrarily often.) If
� = 
ℵ0 for some 
, then �ℵ0 = 
ℵ0·ℵ0 = 
ℵ0 = �, so setting � = 
ℵ0 , and letting

 run through all cardinals, we get arbitrarily large cardinals � satisfying the
equation �ℵ0 = �.

(2) (It is provable in ZFC that the interval ��� �ℵ0 � is nontrivial arbitrarily often.)
Let � be an infinite cardinal, and let cf � be the cofinality of �. It is well known
that �cf � > � (see Corollary 5.14 of [4], for example). Thus if cf � = ℵ0, then
�ℵ0 > �. Since ℵ�+� has countable cofinality for every �, setting � = ℵ�+�, and
letting � run through all ordinals yields arbitrarily large cardinals � where the
equation �ℵ0 = � fails to hold.

(3) (It is consistent with ZFC that all of the intervals ��� �ℵ0 � are small.) Assume
that GCH holds, and let � be an infinite cardinal. Then �ℵ0 ≤ �� = 2� = �+, so
�ℵ0 = � or �ℵ0 = �+. Hence ��� �ℵ0 � has size 1 or 2 for all infinite �.

(4) (It is consistent with ZFC that some interval ��� �ℵ0 � is large.) Choose any
ℵ� <ℵ� and let � = ℵ�. There is a model of ZFC where 2ℵ0 > ℵ�. In this
model �ℵ0 ≥ 2ℵ0 > ℵ�, so the interval ��� �ℵ0 � contains �ℵ��ℵ��, which may be
arbitrarily large.

(5) (It is not consistent with ZFC that some interval ��� �ℵ0 � is (truly) large.) By
“truly large” we mean that the interval contains a lot of alephs, all of which
are larger than the continuum. (Remark (4) showed that it is consistent for
��� �ℵ0 � to contain an arbitrary number of alephs, but some were below the
size of the continuum.) Suppose that � = ℵ� and that �ℵ0 is not the size of the
continuum. (For example, suppose � itself is larger than the continuum.) Then
it follows from a celebrated theorem of Shelah that �ℵ0 < ℵ�4

. (Theorem 5.13 in
Volume II, Chapter 14 of [1].) So, if � = ℵ� exceeds the size of the continuum,
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3584 KEARNES AND OMAN

then there is an upper bound on which aleph �ℵ0 can be. (Similar results hold
for � = ℵ� where � is any limit ordinal of countable cofinality.)

(6) (The statement: “There is a Noetherian integral domain of size ℵ2 with a finite
residue field" is equivalent to the negation of CH.) Let � be a prime power. By
Lemmas 2.1 and 2.2, there exists a Noetherian integral domain D of size ℵ2 with
a residue field of size � if and only if ℵ2 ≤ �ℵ0 = 2ℵ0 if and only if CH fails.
Note that ℵ1 ≤ 2ℵ0 in any model of ZFC, and so the existence of a Noetherian
integral domain of size ℵ1 with a finite residue field is provable in ZFC.

Until this point, we have compared the size of a Noetherian integral domain
R to the size of a single residue field R/M . Next we turn to the comparison of �R�
to the cardinalities of finitely many residue fields, �R/Mi�, i = 1� � � � � n, which is one
of the problems focused on in [6, 7]. The result is simply that these cardinals can be
arbitrary subject to the restriction in Lemma 2.1.

Theorem 2.6. Let ��� �1� � � � � �n� be a finite sequence of cardinals where each �i is
a prime power or is infinite and

�i + ℵ0 ≤ � ≤ �
ℵ0
i

holds for all i. Then there is a Noetherian integral domain R of dimension 1 with exactly
n maximal ideals M1� � � � �Mn such that �R� = � and �R/Mi� = �i for all i.

Proof. When � ≤ 2ℵ0 this result is stated and proved correctly in Theorem 2.3 of
[7]. When � > 2ℵ0 the result is stated and proved incorrectly because of the influence
of the erroneous Lemma 2.1 of [7]. The correct thing to do when � > 2ℵ0 is to
simply notice that this cardinality restriction has no bearing on the construction
used earlier. That is, the construction that worked when � ≤ 2ℵ0 also works when
� > 2ℵ0 . In fact, when � > 2ℵ0 one can omit the use of special number fields in the
construction and just use �, as in the argument from Example 2.10 of [6]. �

3. CORRECTIONS CONCERNING SPECTRA

If R is a commutative ring, then the inclusion order on prime ideals can be
recovered from the topology on Spec�R�, since � ⊆ � holds exactly when � lies in
the closure of ���. Conversely, if R is Noetherian, then the topology of Spec�R�
can be determined from the order on prime ideals, since a subset of Spec�R� is
topologically closed iff it is a finitely generated order filter in the poset of primes
under inclusion. Thus, there is no harm in considering Spec�R� exclusively as a poset
when R is Noetherian, which we do in this section.

If F is a field of cardinality �, then Spec�F�x�� considered as an ordered set is
easily seen to be a fan of size � + ℵ0:
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by which we mean a subset of pairwise incomparable elements (an antichain) of size
�F�x�� = � + ℵ0 with a bottom element adjoined. Here we are using the facts that
the prime ideals of F�x� are �0� and �f�x�� where f�x� ∈ F�x� is irreducible, and that
there are �F�x�� of the latter type.

The primary goal of the articles [6, 7] is to determine the structure of the
ordered set Spec�R�x�� when R is a Noetherian integral domain of dimension 1 that
has finitely many maximal ideals. This problem was solved by Heinzer and Wiegand
in [3] in the case where R is countable. Shah’s efforts in [6, 7] are directed towards
extending that result to uncountable rings.

The statement that R is a Noetherian integral domain of dimension 1 that has
finitely many maximal ideals means that it is a Noetherian ring whose spectrum is a
finite fan. Suppose that this is so and that the nonzero primes of R are the maximal
ideals M1� � � � �Mn. The ideals 0�x��M1�x�� � � � �Mn�x� are prime in R�x� and form a
fan contained in Spec�R�x��, which we call the bottom fan of Spec�R�x��:

The primes of R�x� containing some given Mi�x� are in 1-1 order-preserving
correspondence with the primes of R�x�/Mi�x� = �R/Mi��x�, and hence these primes
form a fan of size �i + ℵ0 for �i = �R/Mi� according to our observation about
spectra of polynomial rings over fields. We call these the top fans of Spec�R�x��:

We depict the top fans as if they are disjoint, and indeed they must be, since Mi +
Mj = R implies Mi�x�+Mj�x� = R�x�, so no prime of R�x� contains distinct Mi�x�
and Mj�x�. We also depict Spec�R�x�� as if it had height 2, which of course it
must be by dimension theory for Noetherian rings. This fully describes that part of
Spec�R�x�� consisting of the primes comparable to the Mi�x�’s.

The remaining primes are exactly the nonzero primes of R�x� whose restriction
to R is zero. But a prime of R�x� restricts to zero in R iff it survives the localization
of R�x� at the multiplicatively closed set S = R− �0�, hence these primes are in 1-1
correspondence with the primes of S−1R�x� 	 K�x� where K is the quotient field of
R. This shows that the remaining primes form one last fan (of size �K� + ℵ0 = �R� +
ℵ0 = �R� =
 �), that we call the side fan of Spec�R�x��:
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3586 KEARNES AND OMAN

It is now clear why it is important to know the relationship between the cardinality �
of R and the cardinalities �i = �R/Mi� of its residue fields: these cardinals determine
the sizes of the fans that appear in Spec�R�x�� when Spec�R� is itself a finite fan.

The only undetermined aspect of Spec�R�x�� is the order relationship between
the top elements of the side fan and the top elements of the top fans. So let S
denote the top elements of the side fan, let T be the set of top elements of the
top fans (the height two elements), let ��T� be the power set of T , and let � 
 S →
��T� be the function that assigns to each top element � of the side fan the set of
primes in T that lie strictly above �. What is shown in Theorem 2.4 of [6] is that
this comparability function � must behave in exactly one of two different ways,
depending on whether R is a Henselian local ring. If R is not such a ring, then

(�) � 
 S → ��T� maps onto the set of finite (possibly empty) subsets of T , and for
any finite set T0 ⊆ T the fiber �−1�T0� has size �.

But if R is a Henselian local ring, then

(�) � 
 S → ��T� maps onto the subsets of T that have size at most 1, and for any
set T0 ⊆ T of size at most 1 the fiber �−1�T0� has size �.

This information completes the description of the possible isomorphism types
of Spec�R�x�� when R is a Noetherian integral domain of dimension 1 with finitely
many maximal ideals. The final theorem is the following one.

Theorem 3.1. Let R be a Noetherian integral domain of dimension 1 with n maximal
ideals M1� � � � �Mn. If � = �R� and �i = �R/Mi�, then Spec�R�x�� has the following
properties, which determine it up to isomorphism.

Case 1. If R is not a Henselian local ring, then:

(a) the bottom fan has size n;
(b) the top fans have sizes �i + ℵ0 for 1 ≤ i ≤ n;
(c) the side fan has size �; and
(d) � behaves as in (�) above.

Case 2. If R is a Henselian local ring, then n = 1, (a)–(c) hold along with

(d)′ � behaves as in (�) above.

Unfortunately, both [6, 7] go one step further and claim that if � exceeds the size
of the continuum, then � = �1 = · · · = �n, which, as we have seen, is false. The only
restrictions on the sequence ��� �1� � � � � �n� are those listed in Theorem 2.6.
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As a final comment, Theorem 2.6 provides examples of Noetherian integral
domains with n maximal ideals realizing any cardinal sequence ��� �1� � � � � �n�
satisfying the restrictions of that theorem. These cardinal sequences determine the
possibilities for Spec�R�x�� in Case (1) of Theorem 3.1. For Case (2) of Theorem 3.1,
Theorem 2.6 determines which cardinal sequences ��� �� arise for local domains. We
did not take care in Theorem 2.6 to distinguish whether or not our examples are
Henselian, but in fact there exist both Henselian and non-Henselian local domains
�R�M� such that �R� = � and �R/M� = � for any � and � satisfying the cardinality
restrictions of Theorem 2.6, as the next example shows.

Example 3.2. Let F be a field of cardinality �, and let F��t�� be the ring of formal
power series over F in the variable t. As in the proof of Lemma 2.2, we will consider
rings of the form R = F��t�� ∩ K, where K is a field satisfying F�t� ⊆ K ⊆ F��t��. As
shown in that lemma, for any such choice of K the resulting ring R is a DVR with
maximal ideal M = �t� ∩ K for which �R� = �K� and �R/M� = �F � = �.

The polynomial x2 − x − t ∈ �F��t����x� has two roots that sum to 1 in F��t��;
call them r and 1− r. But x2 − x − t has no roots in F�t�, hence r � F�t�. Let L
be a field satisfying F�t� ⊆ L ⊆ F��t�� that is maximal for the condition that r �L.
The existence of L follows from Zorn’s Lemma, and it is not hard to see that the
maximality of L implies that F��t�� is algebraic over L. This implies that �L� =
�F��t��� = �ℵ0 .

Let us further restrict the choice of field K from the first paragraph of this
example so that F�t� ⊆ K ⊆ L. For any � satisfying �F�t�� = � + ℵ0 ≤ � ≤ �ℵ0 = �L�
there is such a field K satisfying �K� = �. If R = F��t�� ∩ K, then R is a DVR of
cardinality � with maximal ideal M = �t� ∩ K, and �R/M� = �.

We argue that R is not Henselian. If it were so, then for any polynomial f�x� ∈
R�x� that factors modulo M into coprime factors, f�x� = g�x�h�x�, there would exist
coprime polynomials g�x�� h�x� ∈ R�x� such that f�x� = g�x�h�x� in R�x�, g�x� =
g�x�+M�x� and h�x� = h�x�+M�x�. But there do not exist such factors for the
polynomial f�x� = x2 − x − t, which factors modulo M as x�x − 1�. For if this
factorization could be pulled back to R�x�, then x2 − x − t would have roots in R.
Since R ⊆ F��t��, these roots could only be r and 1− r, and in the previous
paragraph we arranged that these elements were not in R. This shows that R is
not Henselian, completing the argument that there exist non-Henselian local rings
�R�M� with cardinal parameters � = �R� and � = �R/M� for any ��� �� satisfying the
cardinality restrictions of Theorem 2.6.

The Henselian example satisfying the same cardinality restrictions may be
obtained from the non-Henselian example by Henselization. This does not affect
the isomorphism type of the residue field (Theorem 43.3 of [5]) or the cardinality of
the ring (since the Henselization of R is algebraic over R).
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