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Abstract. We develop the theories of the strong commutator,
the rectangular commutator, the strong rectangular commutator,
as well as a solvability theory for the nonmodular TC commutator.
These theories are used to show that each of the following sets of
statements are equivalent for a variety V of algebras.

(I) (a) V satisfies a nontrivial congruence identity.
(b) V satisfies an idempotent Maltsev condition that fails

in the variety of semilattices.
(c) The rectangular commutator is trivial throughout V .

(II) (a) V satisfies a nontrivial meet continuous congruence
identity.

(b) V satisfies an idempotent Maltsev condition that fails
in the variety of sets.

(c) The strong commutator is trivial throughout V .
(d) The strong rectangular commutator is trivial through-

out V .
(III) (a) V is congruence semidistributive.

(b) V satisfies an idempotent Maltsev condition that fails
in the variety of semilattices and in any nontrivial va-
riety of modules.

(c) The rectangular and TC commutators are both trivial
throughout V .

We prove that a residually small variety that satisfies a congruence
identity is congruence modular.
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CHAPTER 1

Introduction

This monograph is concerned with the relationships between Mal-
tsev conditions, commutator theories and the shapes of congruence
lattices in varieties of algebras.

1.1. Shapes of Congruence Lattices

Carl F. Gauss, in [23], introduced the notation

(1.1) a ≡ b (mod m),

which is read as “a is congruent to b modulo m”, to mean that the
integers a and b have the same remainder upon division by the integer
modulus m, equivalently that a − b ∈ mZ. As the notation suggests,
congruence modulo m is an equivalence relation on Z. It develops that
congruence modulo m is compatible with the ring operations of Z, and
that the only equivalence relations on Z that are compatible with the
ring operations are congruences modulo m for m ∈ Z.

Richard Dedekind conceived of a more general notion of “integer”,
which nowadays we call an ideal in a number ring. Dedekind extended
the notation (1.1) to

(1.2) a ≡ b (mod µ)

where a, b ∈ C and µ ⊆ C; (1.2) is defined to hold if a − b ∈ µ.
Dedekind called a subset µ ⊆ C a module if it could serve as the
modulus of a congruence, i.e., if this relation of congruence modulo
µ is an equivalence relation on C. This happens precisely when µ is
closed under subtraction. For Dedekind, therefore, a “module” was an
additive subgroup of C.

The set of Dedekind’s modules is closed under the operations of in-
tersection and sum. These two operations make the set of modules into
a lattice. Dedekind proposed and investigated the problem of determin-
ing the identities of this lattice (the “laws of congruence arithmetic”).
In 1900, in [13], he published the discovery that if α, β, γ ⊆ C are
modules, then

(1.3) α ∩ (β + (α ∩ γ)) = (α ∩ β) + (α ∩ γ).

1



2 1. INTRODUCTION

This 3-variable law of the lattice of modules is now called the modular
law. Dedekind went on to prove that any equational law of congru-
ence arithmetic that can be expressed with at most 3-variables is a
consequence of the modular law and the laws valid in all lattices.

Dedekind did not write the law in the form (1.3), which is an iden-
tity, but rather as a quasi-identity: for all modules α, β, γ ⊆ C
(1.4) α ⊇ γ −→ α ∩ (β + γ) = (α ∩ β) + γ.1

Dedekind also discovered a useful “omitting sublattices” version of
the modular law. It is the assertion that there do not exist modules
α, β, γ ⊆ C which generate a sublattice isomorphic to N5 (Theorem
I.7.12 of [1]).
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β ∩ α = β ∩ γ

β + α = β + γ

Figure 1.1. The lattice N5

More generally, a congruence on an arbitrary algebra A is an
equivalence relation on the universe of A that is compatible with the
operations of A. Equivalently, it is the kernel of a homomorphism with
domain A. The set of all congruences is a sublattice of the lattice of
equivalence relations on A. A congruence identity of A is an identity
that holds in the lattice Con(A) of all congruences of A. Dedekind’s
observation is that the modular law is a congruence identity satisfied
by C as an abelian group. In fact, it is a congruence identity of any
group, ring, vector space, Boolean algebra or lattice.

Dedekind’s result initiated many lines of research in the 20th cen-
tury, but to avoid losing focus we mention only a few. Garrett Birkhoff
observed that the congruences of any group permute, meaning that
α◦β = β ◦α, and that any lattice of permuting equivalence relations is
modular. This “explains” Dedekind’s result to some degree, but in [22]
N. Funayama and T. Nakayama showed that the lattice of congruences
of a lattice satisfies the distributive law: for all α, β, γ

(1.5) α ∩ (β + γ) = (α ∩ β) + (α ∩ γ),

1In fact, Dedekind used the symbols + and − instead of + and ∩.
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1.2. MALTSEV CONDITIONS 3

which is stronger than the modular law, yet congruences of lattices
need not permute. Thus permutability implies modularity, but not
vice versa. Bjarni Jónsson then refined the results of Birkhoff and
Dedekind by showing in [37] that any lattice of permuting equivalence
relations satisfies the arguesian law, which is stronger than the modular
law. Conversely, he showed that any complemented lattice satisfying
the arguesian law is embeddable into the lattice of congruences of an
abelian group. Here the arguesian law is the 6-variable law asserting
that for all αi, βi, i = 0, 1, 2,

(1.6) (α0 + β0)∩ (α1 + β1)∩ (α2 + β2) ≤ α0 ∩ (γ +α1) + β0 ∩ (γ + β1)

where γ = (α0 +α1)∩(β0 +β1)∩(δ0 +δ1), δ0 = (α0 +α2)∩(β0 +β2) and
δ1 = (α1 + α2) ∩ (β1 + β2). Thus Jónsson solved the special instance
of Dedekind’s problem (of determining the laws of modules) which
concerns only complemented lattices of modules. The full problem is
still open, although in the same paper Jónsson gave an example of a
finite noncomplemented arguesian lattice that is not embeddable in the
congruence lattice of a group, and in [30] Mark Haiman proved that
lattices of permuting equivalence relations satisfy laws stronger than
the arguesian law.

1.2. Maltsev Conditions

LetR be the variety of rings and A be the variety of abelian groups.
The fact that rings have a term-definable underlying abelian group
structure may be denoted A ≤ R, i.e., rings have the structure of
abelian groups and more. A. I. Maltsev proved in [62] that a variety V
of algebras has the property that the congruence lattices of its members
consist of permuting equivalence relations if and only if P ≤ V where
P is the variety with one ternary basic operation symbol p that is
axiomatized by the Maltsev identities:

(1.7) p(x, y, y) ≈ x and p(y, y, x) ≈ x.

In other words, V consists of congruence permutable algebras if and
only if there is a ternary V-term p, called a Maltsev term, such that
the identities (1.7) hold in V. Thus, one may refine Birkhoff’s earlier
explanation of Dedekind’s modularity result to: groups are congruence
modular because groups have a Maltsev term p(x, y, z) = xy−1z, so
groups have permuting congruences, and lattices of permuting equiva-
lence relations are modular.
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Let U be a finitely presented2 variety. The condition on a variety
V that U ≤ V may be expressed as “there is a finite set of V-terms
corresponding to the basic operation symbols of U such that the finite
set of identities corresponding to the axioms of U hold in V.” A con-
dition of this type is called a strong Maltsev condition, and given
a finitely presented variety U the class {V | U ≤ V} is the strong
Maltsev class that is defined by this condition. Given a descending
sequence · · · ≤ U2 ≤ U1 ≤ U0 of finitely presented varieties, the class
{V | ∃n(Un ≤ V)} is the Maltsev class that is defined by this se-
quence, and the Maltsev condition associated to this sequence is the
assertion that for some n there is a finite set of V-terms corresponding
to the basic operation symbols of Un such that a finite set of identities
corresponding to the axioms of Un hold in V.

After Maltsev published the condition from (1.7) defining the class
of varieties with permuting congruences, Alden Pixley found in [72] a
strong Maltsev condition defining the class of varieties with distribu-
tive and permuting congruences, B. Jónsson found in [38] a Maltsev
condition defining the class of varieties with distributive congruence
lattices, and Alan Day found in [8] a Maltsev condition defining the
class of varieties with modular congruence lattices. These results (and
many others like them) culminated in the theorem, obtained indepen-
dently by Pixley [73] and Rudolf Wille [78], that if ε is any lattice
identity, then the class of varieties whose congruence lattices satisfy
ε is the intersection of countably many Maltsev classes. This proves,
in particular, that if two varieties satisfy the same Maltsev conditions,
then they satisfy the same congruence identities. This result of Pixley
and Wille includes an algorithm for generating Maltsev conditions as-
sociated with congruence identities, paving the way for a deeper study
of congruence identities.

J. B. Nation discovered in [69] that there exist lattice identities
that are strictly weaker than the modular law when considered as lat-
tice identities, but equivalent to the modular law when considered as
congruence identities. That is, there exists a variety W of lattices
that strictly contains all modular lattices, yet any variety V of algebras
with the property that the congruence lattice of every algebra from
V is found in W is actually congruence modular. Nation’s Theorem
brought attention to the possibility that there might be “few” different
congruence varieties, which are varieties of lattices of the form

(1.8) CON(V) = H S P ({Con(A) | A ∈ V}) .
2I.e., U is a finitely axiomatized variety with finitely many basic operation

symbols.
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1.2. MALTSEV CONDITIONS 5

For example, it suddenly became plausible that the only proper nondis-
tributive congruence varieties might be those of the form Con(M)
where M is a variety of modules. Nation’s result led Ralph McKenzie
to conjecture in [65] that if ε is any nontrivial lattice identity, then ε im-
plies modularity when considered as a congruence identity. Studies of
identities of small complexity yielded positive evidence for McKenzie’s
Conjecture in [9, 10, 21, 39, 68]. The most general of these results is
the theorem of Ralph Freese and J. B. Nation that any lattice identity
ε that can be written as an inclusion of the form

∧∨∧
variables ≤

∨∧∨
variables

implies modularity as a congruence identity. Similar results were proved
at the same time about congruence identities implying congruence dis-
tributivity, and in [17] one finds the result that any congruence identity
implying congruence modularity must also imply the stronger argue-
sian identity as a congruence identity.

McKenzie’s Conjecture was refuted by S. V. Polin in his famous
paper [74]. Polin constructed a locally finite variety P that is not
congruence modular, but satisfies a nontrivial congruence identity. To
describe a congruence identity that holds in Polin’s variety, let x, y and
z be lattice variables and let y1 = y, z1 = z, yn+1 = y + (x ∩ zn), and
zn+1 = z + (x ∩ yn). Let δn be the weakened distributive law:

x ∩ (y + z) ≈ (x ∩ yn) + (x ∩ zn).

The identity δ1 is the usual distributive law. Although δ2 is strictly
weaker than distributivity as a lattice identity, it implies distributivity
as a congruence identity.3 Polin’s variety satisfies δ3 as a congruence
identity.4 Since it does not satisfy δ2, and since any lattice variety
that satisfies δ3 and not δ2 is nonmodular, Con(P) is an example of a
proper, nondistributive congruence variety that differs from Con(M)
for any variety of modules M.5 Polin’s variety was thoroughly investi-
gated by Day and Freese in [11] with the result that we now have an
efficient algorithm for determining if an identity implies modularity as
a congruence identity. In an unpublished manuscript, Day showed that

3We know this because Ralph Freese showed us that δ2 fails in Con(FP(1)).
Using this observation and the main result of [11] it is easy to see that δ2 implies
distributivity as a congruence identity.

4Polin showed that P satisfies a different congruence identity. Alan Day was
the one to emphasize the importance of the identities δn.

5We now know that there are continuumly many different nonmodular congru-
ence varieties (see [11]), and even some congruence varieties of groups that differ
from any congruence variety of modules (see [71]).
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the Polin construction can be iterated6 to produce varieties satisfying
weaker and weaker nontrivial congruence identities.

Not all of the preceding results were originally proved via Maltsev
conditions, but they could have been, and the analysis of Maltsev con-
ditions is a powerful method for obtaining further results like these.
Moreover, there are results on congruence identities that have been
proved by a careful analysis of the Maltsev conditions defining a given
class of varieties that seem unreachable by any other method, such as
Paolo Lipparini’s results on congruence identities satisfied by congru-
ence n-permutable varieties7 in [55, 57, 59, 60, 61].

1.3. Commutator Theories

Birkhoff’s H S P Theorem asserts that if K is a class of similar alge-
bras, then any model of the identities true in K may be constructed as
a homomorphic image of a subalgebra of a product of algebras in K,
that is as B/θ where B ≤ ∏Ai, Ai ∈ K. Replacing each Ai by the
projection of B onto the i-th factor, we find that a typical model has
the form B/θ where B is a subdirect product of subalgebras of members
of K. It is therefore important to know how to construct congruences
on subdirect products. The case of two factors is already difficult. If
B ≤sd A1×A2 and αi ∈ Con(Ai), then the restriction of α1×α2 to B
is a product congruence on B. All other congruences are skew. For
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0× 1 1× 0

1× 1

∆

Figure 1.2. Con(Z2 × Z2)

example, the congruence lattice of the group B = Z2×Z2 is pictured in
Figure 1.2. There is one skew congruence, ∆, which is the congruence
that has the diagonal subgroup of Z2 × Z2 as a class.

6This and other modifications of Polin’s construction were rediscovered and
appear in [53] and [70].

7Congruences α and β n-permute if the alternating composition α ◦n β =
α ◦ β ◦ α · · · , with n− 1 occurences of ◦, equals β ◦n α. A variety is congruence
n-permutable if the congruences on all members n-permute.
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To understand skew congruences like this one, let us attempt to
describe a typical “diagonal congruence” on a typical “diagonal sub-
algebra” B of A2 for some algebra A in a congruence permutable va-
riety V. Here a “diagonal subalgebra” is one containing the diagonal
of A2, and a “diagonal skew congruence” is a congruence generated
by a set of pairs of elements from the diagonal. More formally, if
δ : A → A2 : a 7→ (a, a) is the canonical diagonal embedding, then
B ≤ A2 is a diagonal subalgebra if δ factors through the inclusion of
B into A2. A diagonal congruence on B is the extension to B of a
congruence on δ(A).

Since we have assumed that A has a Maltsev term, the only diagonal
subalgebras B of A2 are those whose universe B is a congruence on A,
say B = β. Since the diagonal of A2 supports a subalgebra isomorphic
to A, the only diagonal congruences on B are the extensions to B of
congruences δ(α) for α ∈ Con(A). Thus, the construction of a typical
diagonal congruence on a typical diagonal subalgebra B ≤ A2 involves
a pair of congruences α, β ∈ Con(A). Specifically, we are considering
B to be the subalgebra supported by β, and a diagonal congruence
∆ = ∆α,β on B that is generated by {〈(u, u), (v, v)〉 | (u, v) ∈ α}. We
next try to understand how ∆ is related to the product congruences of
B.

Since we have assumed that A has a Maltsev term, and B is in
the variety generated by A, Con(B) is modular. It is a consequence
of Dedekind’s analysis of 3-variable consequences of the modular law
that the 3-generated free modular lattice has only 28 elements, hence
any 3-generated modular lattice can be easily drawn. In particular, the

r
r
r

r
r
r

r
r
r
r

r
r
r

r
r
r

r
r
r
r

r
r

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
QQ

Q
Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
��

�
�
��

Q
Q
QQ

Q
Q
QQ

Q
Q
QQ

�
�
��

�
�
��

�
�
��

η2 = 1× 0η1 = 0× 1
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∆
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ψ = α× α

Figure 1.3. 〈η1, η2,∆ | η1 ∩ η2 = 0〉
modular lattice with the presentation 〈η1, η2,∆ | η1∩η2 = 0〉 is the one
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in Figure 1.3. Hence the sublattice of Con(B) that is generated by the
projection kernels η1 = 0× 1 and η2 = 1× 0 together with ∆ = ∆α,β is
a homomorphic image of this lattice. The smallest product congruence
containing ∆, the “product cover” of ∆, is

(∆ + (0× 1)) ∩ (∆ + (1× 0)) = α× α = ψ.

We take the interval I[∆, ψ], from ∆ to its product cover, to be a
measure of the skewness of ∆. Meeting with η2 and joining with η1

projects this interval in two steps to the isomorphic interval

(1.9) I[η1 + (∆ ∩ η2), η1 + (ψ ∩ η2)] = I[η1 + (∆ ∩ η2), (α ∩ β)× 1],

so the interval in (1.9) can also be taken to be a measure of the skewness
of ∆. But the interval in (1.9) lies entirely in the interval above the
first coordinate projection kernel η1, which is naturally isomorphic to
Con(A), so we can measure the skewness of ∆ by considering the
corresponding congruence interval of A. The left lattice in Figure 1.4
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η1 = 0× 1

α× 1 β × 1

η1 + (∆ ∩ η2)

(α ∩ β)× 1

(α+ β)× 1

0

α β

?

α ∩ β

α+ β

Figure 1.4. I[0× 1, 1× 1] vs. Con(A)

indicates the interval in Con(B) above η1, while the right lattice shows
the corresponding congruences on A. Note especially the question mark
by the right lattice, which labels the congruence on A induced by ∆.
This induced congruence is a function of α and β, and will be written
[α, β] and called the commutator of α and β. For groups it is the
ordinary group commutator.8 The interval from the commutator [α, β]
to the intersection α ∩ β is the interval in Con(A) that measures the
skewness of ∆.

In analogy with group theory, we call a congruence interval I[σ, τ ]
abelian if [τ, τ ] ≤ σ, and call A abelian if Con(A) is an abelian con-
gruence interval. If τ is defined to equal α ∩ β in the last paragraph,
then τ ≤ α and τ ≤ β so [τ, τ ] ≤ [α, β]. This shows that the in-
terval I [[α, β], α ∩ β], which measures the skewness of ∆, is abelian.

8This means that if Nα and Nβ are the normal subgroups corresponding to the
subscripted congruences, then [Nα, Nβ] = N[α,β].
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Conversely, every abelian interval I[σ, τ ] is contained in an interval
that measures the skewness of some diagonal congruence, namely ∆τ,τ .
Hence diagonal congruences fail to be skew in V if and only if V omits
abelian congruence intervals if and only if the commutator trivializes
throughout V in the sense that

(1.10) ∀α, β([α, β] = α ∩ β)

holds throughout V. It can be shown that for varieties with a Mal-
tsev term the commutator identity (1.10) is equivalent to congruence
distributivity, and from congruence distributivity one can derive that
there are no skew congruences of any type in finite subdirect products
of algebras in V. Thus, although it seems that we examined only a very
special instance of a diagonal skew congruence, which then resulted in
the definition of the commutator, this commutator controls all skew
congruences in finite subdirect products in varieties with a Maltsev
term.

In fact, the assumption that A has a Maltsev term was used only
to deduce that every diagonal subalgebra of A2 has a congruence as
its universe. This fact turns out to be inessential; the theory can be
developed under the weaker hypothesis that A lies in a congruence
modular variety. The theory of this commutator was developed by
Jonathan D. H. Smith (when V has a Maltsev term) in [75], Joachim
Hagemann and Christian Herrmann in [28], Heinz-Peter Gumm in [27],
and Freese and McKenzie in [19]. The strength of the theory lies in
the representation theorem for abelian algebras, proved by Herrmann
in [31], which states that an abelian algebra in a congruence modular
variety is affine. This theorem associates to an abelian algebra or
congruence interval a module in the modern sense, i.e., a module over
a ring. The fact that the commutator links every skew congruence with
a module is the key to dealing with these congruences.

To emphasize the link with what we have said earlier, the commu-
tator in congruence modular varieties encodes the existence of skew
congruences. When the commutator trivializes, skew congruences are
omitted, and this restricts the shape of the congruence lattices in
some way. In the case of the modular commutator, this restriction
on shapes is expressible by a congruence identity stronger than modu-
larity, namely the distributive law.

When V is not congruence modular the types of skew congruences
multiply. Different commutator theories have been invented which deal
with this. The TC-commutator is a commutator based on the term
condition (Section 2.5). It was invented by Ralph McKenzie to gen-
eralize the modular commutator. As such it encodes the existence of
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10 1. INTRODUCTION

diagonal skew congruences. A useful and completely general repre-
sentation theorem for abelian algebras and congruences is not likely
to exist, but Keith Kearnes and Ágnes Szendrei extended Herrmann’s
representation theorem for congruence modular varieties to any variety
satisfying some nontrivial idempotent Maltsev condition in [52].

McKenzie next introduced the strong term condition, [66, 34],
a concept similar in spirit to the ordinary term condition. He proved
its usefulness in many ways, but he did not develop a commutator
theory for it. Later McKenzie defined the concept of rectangulation,
[54], and established its usefulness. His definition was slightly short of a
term condition for rectangulation, and he did not develop a commutator
theory for it.

In the early 1990’s we worked on the problem of developing a com-
mutator theory for McKenzie’s strong term condition. We found that
certain “cross-diagonal” skew congruences occur naturally in algebras.
These are congruences on symmetric diagonal subalgebras B ≤ A2 gen-
erated by pairs of the form 〈(u, v), (v, u)〉. The behavior of this type of
skew congruence is encoded in a commutator we call the strong rect-
angular commutator. It is so named because it has an associated
term condition related to McKenzie’s description for rectangulation.
We developed the theory of this commutator in [49] and proved a rep-
resentation for its abelian algebras and congruences. We found that
McKenzie’s strong term condition was exactly the conjunction of his
original term condition (TC) and our term condition for strong rectan-
gulation, therefore a commutator theory for the strong term condition
follows from the theories of the TC-commutator and the strong rect-
angular commutator without further effort.

In this monograph we introduce a term condition for rectangula-
tion, develop the theory of the rectangular commutator, and prove a
representation theorem for its abelian algebras and congruences (Chap-
ter 5).

There are actually many more commutators than the four described
above, but the others are approximations to these. Each of these com-
mutators has an ideal model of an abelian algebra. For the TC com-
mutator, the ideal model is an abelian group expanded by unary en-
domorphisms, i.e., a module over a ring. For the strong commutator
it is a set expanded by unary endomorphisms, i.e., a unary algebra.
For the rectangular commutator it is a semilattice expanded by unary
endomorphisms, which is a natural type of semimodule. For the strong
rectangular commutator it is a reduct to an antichain of a semilattice
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expanded by unary endomorphisms. The strangeness of this fourth no-
tion of ‘abelianness’ is a reminder that these commutator theories do
not begin by postulating the structure of an ideal abelian algebra, but
rather by identifying a natural type of skew congruence.

1.4. The Results of This Monograph

The theorem which prompted us to write this monograph was our
1999 discovery that a variety satisfies a nontrivial congruence identity
if and only if it satisfies an idempotent Maltsev condition that fails in
the variety of semilattices (Theorem 7.15). David Hobby and Ralph
McKenzie proved in Chapter 9 of [34] that a certain Maltsev condi-
tion, that we will call in this introduction “HM”, defines the class of all
varieties satisfying an idempotent Maltsev condition that fails in the
variety of semilattices. HM is a disjunction

∨
HMn of strong Maltsev

conditions. The proof of the 1999 theorem is based on a careful analy-
sis of various Maltsev conditions equivalent to HM. A novel feature of
the proof is that it deals only with the local effects of HM on nonsolv-
able intervals in congruence lattices of algebras in a variety V satisfying
some HMn. Namely, we prove that every nonmodular interval in a con-
gruence lattice contains what we call a “solvability obstruction”. We
use HMn to introduce a rank function on solvability obstructions that
appear in congruence lattices of algebras in V. Then we prove that

r
r

r
r
r
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Figure 1.5.

for every solvability obstruction that appears in the interval I[β, α]
of some copy of N5 in some congruence lattice there is associated a
solvability obstruction of strictly smaller rank in the interval I[σ, γ]
(cf. Figure 1.5). By iterating this observation, one obtains that deeply
nested copies of N5, as depicted in Figure 1.6, can appear as a sub-
lattice of a congruence lattice of an algebra in V only if solvability
obstructions of large rank exist. We complete the proof by proving
that the complexity of HMn induces a uniform (finite) bound on the
rank of solvability obstructions throughout V, hence for some ` it is not
possible to embed N`+5 into the congruence lattice of any member of
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Figure 1.6. The lattice N`+5

V. This fact is converted into a nontrivial congruence identity satisfied
by V.9

This theorem gives a simple answer to the question “Which varieties
satisfy nontrivial congruence identities?” But more importantly, the
effort to prove the theorem answers the questions “Which varieties
have trivial rectangular commutator?” and “What kinds of restrictions
on congruence lattice shapes are linked to having trivial rectangular
commutator?”, since the combination of Theorems 5.25 and 7.15 prove
that a variety V satisfies a nontrivial congruence identity if and only if
the rectangular commutator is trivial throughout V.

This monograph contains many characterizations of the class of va-
rieties whose rectangular commutator is trivial: by the shapes of con-
gruence lattices in these varieties and by the Maltsev conditions they
satisfy (see, for example, Sections 5.3, 7.2 and 8.2). But it also contains
characterizations of other classes of varieties with parallel descriptions.
Namely, we consider the classes of varieties (i) whose strong commuta-
tor is trivial (Sections 3.1, 4.2 and 4.3), (ii) whose strong rectangular
commutator is trivial (Sections 3.2, 4.2 and 4.3), (iii) whose TC com-
mutator is trivial (Section 8.1), and (iv) whose rectangular and TC
commutators are both trivial (Section 8.3). These characterizations of
classes of varieties are also in terms of the shapes of congruence lattices

9It is interesting that Dedekind’s investigation into the arithmetic of congru-
ences of 〈C; +,−, 0〉 led to the law postulating the omission of sublattices isomorphic
to N5, while the natural extension of that investigation to arbitrary algebras leads
to “generalized modular laws” postulating the omission of sublattices isomorphic
to N`+5 for some `.
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in these varieties and the Maltsev conditions they satisfy. One byprod-
uct of this investigation is our first real understanding of congruence
join semidistributivity: a variety V is congruence join semidistributive
if and only if it is congruence meet semidistributive and satisfies a non-
trivial congruence identity (equivalently, if all commutators trivialize
throughout V).

We end the monograph with a chapter on residually small varieties
satisfying congruence identities (Chapter 9). The main result of this
chapter is that a residually small variety satisfies a congruence identity
if and only if it is congruence modular, hence McKenzie’s Conjecture
is true for residually small varieties. We apply the main result of the
chapter to show that there is no “almost congruence distributive” va-
riety that satisfies a nontrivial idempotent Maltsev condition.

Ten open problems are posed in this monograph (six in Chapter 4,
one in Chapter 6, and three in Chapter 9).



CHAPTER 2

Preliminary Notions

Here we fix notation and introduce definitions and results with the
purpose of providing a bridge from standard material to the material
in this monograph.

In this chapter and the sequel we use the following conventions
concerning notation. The set of natural numbers is ω. The first natural
number is 0. Sequences or tuples of elements from a set X are written
in boldface, as in x ∈ X (or x ∈ Xn if the length n is to be specified).
The i-th coordinate of the tuple x is written in italic as xi. If two
sequences x,y ∈ X have the same length and R is a binary relation
on X, then we may write x ≡ y (mod R) or x ≡R y or x R y to
mean that (xi, yi) ∈ R for all i. If R is a binary relation on X, then
the set Xn[R] consists of the tuples x ∈ Xn such that xi ≡R xj for
all 1 ≤ i ≤ j ≤ n. The projection of a subset S ⊆ ∏

i∈I Xi onto
a subset of coordinates J ⊆ I is denoted πJ : S → ∏

j∈J Xj, and its

kernel is denoted ηJ . If θ is an equivalence relation on
∏

j∈J Xj, then

θJ denotes π−1
J (θ) (so 0J = ηJ). When J = {j}, then we write πj, ηj

and θj instead of π{j}, η{j} and θ{j}. Expressions A := B or B =: A
mean “A is defined by B”.

2.1. Algebras, Varieties, and Clones

An algebra is a model of a 1-sorted first-order algebraic language.
To fix conventions, an algebraic signature is a pair σ := (F, α) where
F is a set (of operation symbols), and α : F → ω is a function (assigning
arity). An algebra of signature σ is a pair A := 〈A;F 〉 where A is a
set, called the universe of A, and for each f ∈ F with α(f) = k there
is an assigned k-ary operation fA : Ak → A. The operations fA are
called the basic operations of A.

If Y is a set that is disjoint from F , then T (Y ) is the smallest set
of words in the alphabet F ∪ Y satisfying

(i) Y ⊆ T (Y ), and
(ii) if f ∈ F , α(f) = k and g1, . . . , gk ∈ T (Y ), then fg1 · · ·gk ∈

T (Y ).

14

   
Callout
non-empty set



2.1. ALGEBRAS, VARIETIES, AND CLONES 15

When Y = X := {xi | 1 ≤ i < ω}, then T (X) is the set of terms of
signature σ, and its members are called terms. When Y = Xn :=
{x1, . . . , xn}, the members of T (Xn) are n-ary terms.

T (Y ) has a canonical structure of an algebra of signature σ. If
f ∈ F has arity k, then in the term algebra T = T(Y ) the operation fT

is defined so that if g1, . . . , gk ∈ T , then fT(g1, . . . , gk) = fg1 · · · gk ∈
T . If A is an algebra of signature σ and Y = X or Xn, then an
assignment in A of the variables Y is a function v : Y → A. It
follows from the unique readability of terms that any assignment v
extends uniquely to an algebra homomorphism v̂ : T → A; i.e., T is
free over Y in the class of all algebras of signature σ. If t ∈ T , then
both v̂(t) and t(v) denote the image of t under v̂.

If A is an algebra of signature σ and t ∈ T (Xn), then t deter-
mines an n-ary term operation on A, tA : An → A, defined by
(a1, . . . , an) 7→ t(v) where v : Xn → A is the assignment xi 7→ ai.
These remarks apply in the case where A = T = T(Xn), and show
that, if t ∈ T (Xk) and g1, . . . , gk ∈ T (Xn), then there is a term
t(g1, . . . , gk) := tT(g1, . . . , gk) ∈ T (Xn). It can be proved by induc-
tion that, in this notation, the term t(x1, . . . , xk) is simply t itself.

The language L associated with the signature σ is the set of first-
order formulas in this signature. Parentheses may be added to formulas
to improve readability. An identity in the language L is an atomic
L-formula, which is a formula of the form p ≈ q where p, q ∈ T (Xn) for
some n. A satisfies p ≈ q, written A |= p ≈ q, if p(v) = q(v) for every
assignment in A (equivalently if pA = qA). A class of algebras in the
language L is a variety if it is definable as the class of all L-algebras
satisfying some set of identities. The smallest variety containing an
algebra A is denoted V(A).

A quasi-identity is an open first-order formula of the form

n∧

i=1

(pi ≈ qi)→ (p ≈ q)

where p ≈ q and each pi ≈ qi is an identity.
A clone is a multisorted structure C = 〈C0, C1, . . . ;F 〉, with sorts

indexed by ω, where

(i) Each of the sorts Ci, i ∈ ω, is a set.
(ii) F = {πni | n ∈ ω, 1 ≤ i ≤ n} ∪ {compmn | m,n ∈ ω}〉 is a set of

operations between the Ci.
(iii) Each πni is a 0-ary operation (a constant) in Cn.
(iv) compmn : Cm × (Cn)m → Cn is an (m+ 1)-ary operation.
(v) compnn(f, πn1 , . . . , π

n
n) = f and compmn (πmi , f1, . . . , fm) = fi.
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(vi) comppm(f, compnm(g1, h1, . . . , hn), . . . , compnm(gp, h1, . . . , hn)) =

compnm(comppn(f, g1, . . . , gp), h1, . . . , hn).

For an example of a clone, take Cn to be the set of n-ary L-terms, take
πni to be xi, and take compmn to be the composition of an m-ary term
with m n-ary terms. This is the clone of L-terms. The clone of A
when A is an algebra is defined similarly using the term operations of
A instead of the L-terms.

It is evident that clones are multisorted algebras defined by identi-
ties, hence the class of clones is a multisorted variety. This implies that
the usual algebraic notions apply to clones. In particular, a sequence

h = (h0, h1, . . .) : C → D
is a homomorphism between clones if each hi : Ci → Di is a func-
tion, and the sequence h preserves the clone operations of composition
and projection. The notions of kernel and quotient are defined in the
obvious way.

Let V be a variety of 1-sorted algebras in the language L. The
clone of V, denoted Clo(V), is that quotient of the clone of L-terms
that is obtained by identifying terms p, q ∈ Cn if p ≈ q is satisfied by all
algebras in V. The correspondence V 7→ Clo(V) is essentially bijective.
Namely, each variety V is assigned the clone Clo(V), and each clone
C is assigned a variety Var(C) which we define now. The operation
symbols of Var(C) are

⋃
i∈ω Ci where the arity of f ∈ Cn is defined to

be n. The identities defining Var(C) are of two types:

(i) projection identities: πni (x1, . . . , xn) ≈ xi for each 1 ≤ i ≤ n,
and

(ii) composition identities:

f(x1, . . . , xn) ≈ g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn))

whenever the equality f = compmn (g, h1, . . . , hm) holds in C.
It can be shown that C = Clo(Var(C)) holds for any clone C, while V is
definitionally equivalent to the variety Var(Clo(V)) for any variety V.

We write U ≤ V if there is a homomorphism h : Clo(U)→ Clo(V).
This notation is used to express the fact that the algebras in V have
an underlying U -structure.

2.2. Lattice Theory

A partial lattice is a structure P = 〈P ;∨,∧,≤〉 where 〈P ;≤〉 is
a partially ordered set and ∨ and ∧ are partial binary operations on P
(called join and meet respectively) such that, if a ∨ b is defined, then
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it is the least upper bound of a and b in 〈P ;≤〉, and if a∧ b is defined,
then it is the greatest lower bound of a and b in 〈P ;≤〉. A lattice
is a total algebra L = 〈L;∨,∧〉 on which there is an order making
〈L;∨,∧,≤〉 a partial lattice.

If x ≤ y in some lattice L, then the interval between them is
I[x, y] := {z | x ≤ z ≤ y}. A lattice ideal of L is a subset I ⊆ L
closed under join (x, y ∈ I =⇒x ∨ y ∈ I) and close downward (x ∈
I & z ≤ x=⇒ z ∈ I). The dual concept is a lattice filter. The
principal ideal determined by x ∈ L is (x] := {z | z ≤ x}. The
collection I(L) of all ideals of L, ordered by inclusion, is the ideal
lattice of L. If I, J ∈ I(L), then I ∧ J = I ∩ J and

I ∨ J = {z | ∃x ∈ I, y ∈ J(z ≤ x ∨ y)}.
Lattice terms may be called words. If p and q are n-ary lattice

words, then the inclusion p ≤ q is satisfied by a lattice L if and only if
pL ≤ qL in the pointwise order. Therefore L satisfies p ≈ q if and only
if it satisfies both p ≤ q and q ≤ p. Note also that p ≤ q is satisfied by
L if and only if the identity p ≈ p ∧ q is satisfied by L. It follows that
a class of lattices is definable by identities if and only if it is definable
by inclusions. The variety of all lattices is denoted L.

If Q is the lattice quasi-identity
∧

(pi ≈ qi) → (p ≈ q), then the
Q-configuration is a pair (P(Q), p ≈ q) where P(Q) is the natural
partial lattice of subterms of terms of Q. That is, P(Q) is the partial
lattice presented by 〈G | R〉 where G is the set of subterms of terms
appearing in Q and R consists of relations of the following types: if
s, t and s ∨ t are subterms, then R contains a relation expressing that
s ∨ t is equal to the join of s and t, R contains similar relations for
meet, and for each premise pi ≈ qi of Q the set R contains the relation
pi = qi. It is not assumed that R contains p = q where p ≈ q is the
conclusion of Q. This definition exists to make the following statement
true: an assignment of the variables of Q in a lattice L which satisfies
the premises of Q determines and is determined by a homomorphism
of partial lattices ϕ : P(Q) → L, and the assignment will satisfy Q
precisely when ϕ(p) = ϕ(q).

Definition 2.1. The meet semidistributive law is the quasi-
identity

(2.1) ((p ∧ q) ≈ s) & ((p ∧ r) ≈ s)→ ((p ∧ (q ∨ r)) ≈ s),

and the join semidistributive law is the dual quasi-identity.

Quasi-identity (2.1) is equivalent to

(2.2) ((p ∧ q) ≈ s) & ((p ∧ r) ≈ s) & ((q ∨ r) ≥ p)→ (p ≈ s).
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The reason this is so is that any assignment of variables which fails to
satisfy (2.2) will also fail to satisfy (2.1), while conversely if p 7→ a, q 7→
b, r 7→ c, s 7→ d is an assignment of variables in some lattice that fails to
satisfy (2.1), then p 7→ a∧ (b∨ c), q 7→ b, r 7→ c, s 7→ d is an assignment
that fails to satisfy (2.2).

The SD∧-configuration is the Q-configuration where Q is quasi-
identity (2.2). More explicitly, let P(SD∧) be the partial lattice gener-
ated by {p, q, r,m, j} where m = p∧ q = p∧ r and j = q∨ r ≥ p. Then
the SD∧-configuration is (P(SD∧), p ≈ m). An SD∧-failure in a lattice
L is an interval of the form I = I[ϕ(m), ϕ(p)] where ϕ : P(SD∧) → L
is a homomorphism of partial lattices. This SD∧-failure is trivial if I
has one element and is nontrivial otherwise. The SD∨-configuration
and SD∨-failures are defined dually. Thus a lattice is meet semidis-
tributive if and only if it has no nontrivial SD∧-failures.

For finite lattices, or for varieties of lattices, the meet and join
semidistributive laws are characterized in the following theorem.

Theorem 2.2.

(1) (Cf. [7]) A finite lattice is meet semidistributive if and only
if it has no sublattice isomorphic to M3,D1,E1,E2 and G.
(These are five of the following six lattices.)
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(2) (Cf. [41]) A variety of lattices consists of meet semidistributive
lattices if and only if it does not contain M3,D1,E1,E2 or G.
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The dual results hold for join semidistributivity in place of meet semidis-
tributivity.

Definition 2.3. Whitman’s condition, denoted by (W), is the
formula

(x∧y ≤ u∨v)→ ((x ≤ u∨v) or (y ≤ u∨v) or (x∧y ≤ u) or (x∧y ≤ v)).

This condition may be written a little more compactly as:

x ∧ y ≤ u ∨ v implies {x, y, u, v} ∩ I[x ∧ y, u ∨ z] 6= ∅.
All lattices depicted in Theorem 2.2 satisfy (W).

Definition 2.4. A quasi-identity
∧n
i=1(pi ≈ qi) → (p ≈ q) in k

variables satisfies (W) if the lattice with the presentation 〈G | R〉 sat-
isfies (W), where G = {g1, . . . , gk}, g = (g1, . . . , gk) and R = {p1(g) =
q1(g), . . . , pn(g) = qn(g)}.

Note that whether or not a quasi-identity satisfies (W) depends
only on its premises. It is proved in [6] that a quasi-identity Q satisfies
(W) iff the associated partial lattice P(Q) satisfies (W). Since P(Q)
is finite, this yields an algorithm for testing a quasi-identity for (W).
It is noted in [6] that the meet semidistributive law satisfies (W), and
that more generally any quasi-identity whose premises are free of joins
(as in form (2.1) of the meet semidistributive law) satisfies (W). These
remarks also apply to the join semidistributive law.

Definition 2.5. A surjective lattice homomorphism h : K→ L is
upper bounded if each kernel class has a largest element, is lower
bounded if each kernel class h−1(a), a ∈ L, has a least element, and
is bounded if it is both lower and upper bounded. A lattice L is (up-
per, lower) bounded if there is a surjective (upper, lower) bounded
homomorphism h : FL(x1, . . . , xn) → L from a finitely generated free
lattice onto L.

Any lower bounded lattice is join semidistributive (Theorem 2.20
of [16]). Chapter 2 of [16] describes an effective algorithm for testing
if a finite lattice is lower or upper bounded. We shall not have cause to
use this algorithm, but for later reference we point out that D1 is the
only lower bounded lattice depicted in Theorem 2.2. The others are
excluded because they are not join semidistributive, while the lower
boundedness of D1 is proved one way in Example 2.74 of [16] and
differently in Table 3 of [64].

Definition 2.6. An algebra P is projective relative to a variety V
if whenever σ : A→ B is a surjective homomorphism between algebras
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of V and ϕ : P→ B is a homomorphism, then there is a homomorphism
ϕ : P→ A such that σ ◦ ϕ = ϕ.

When V is a variety of lattices, we may call a partial lattice P pro-
jective relative to V if it satisfies the homomorphism lifting property
of this definition.

Theorem 2.7. If V is a variety of algebras and P is subdirectly
irreducible and projective relative to V, then there is a an identity ε
such that for all A ∈ V it is the case that A |= ε if and only if A has
no subalgebra isomorphic to P.

Proof. Let U consist of all members of V that have no subalge-
bra isomorphic to P. U is closed under the formation of homomorphic
images because P is projective relative to V, U is closed under sub-
algebras by definition, and U is closed under products because P is
subdirectly irreducible. By Birkhoff’s H S P Theorem, U is a subvari-
ety of V. Since P /∈ U , there is an identity ε that is satisfied in U but
not by P. Necessarily ε fails in every member of V −U , so this identity
has the property stated in the theorem. �

We call the identity ε of Theorem 2.7 the conjugate identity for
P.

We shall have occasion to refer to the following closely-related re-
sult.

Theorem 2.8. If Q is a quasi-identity and P(Q) is projective rel-
ative to V, then the class of lattices in V that satisfiy Q is a subvariety
of V.

Proof. As above, let U consist of all members of V that satisfy Q.
U is closed under the formation of homomorphic images because P(Q)
is projective relative to V, U is closed under subalgebras and products
because Q is a quasi-identity. �
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2.3. Meet Continuous Lattice Theory

A lattice is meet continuous if it is complete and the binary meet
operation distributes over arbitrary up-directed suprema. That is, for
every up-directed set D,

(2.3) x ∧
∨

y∈D
y =

∨

y∈D
x ∧ y.

Every algebraic lattice is meet continuous (Lemma VIII.5.2 of [1]).
The language of meet continuous lattices has operation symbols

{∨,∧} where
∨

is a class of κ-ary join operations for all κ ≥ 0 and
∧ is binary meet. The 0-ary join is a constant that interprets as the
least element and is denoted 0. The fact that ∧ is a meet operation is
expressible by identities in the same way that it is expressed in lattice
theory. As with binary join, it is easy to express with identities the
fact that κ-ary

∨
is κ-ary join with respect to the ∧-order. To show

that meet continuity is expressible by identities one must show that
the distributive law in (2.3) can be rewritten with quantification over
arbitrary sets rather than up-directed sets. This is done by by replacing
an arbitrary join with the up-directed supremum of its finite sub-joins:

x ∧
∨

y∈F
y ≈

∨

F0 ⊆ F
F0 finite

(
x ∧

∨

y∈F0

y

)
.

The category LMC of meet continuous lattices with join complete
homomorphisms has a forgetful functor F : LMC → L to lattices that
forgets all join operations except the binary join. Theorem 2.9, which
is essentially due to Ralph Freese, asserts that this functor has a left
adjoint given by the ideal lattice functor. Here if h : K → L is a
homomorphism between lattices, then I(h) : I(K) → I(L) is defined
by

I(h)(I) = {z ∈ L | ∃x ∈ I(z ≤ h(x))}.
Theorem 2.9. Restriction to L is a natural bijection

| : LMC(I(L),K)→ L(L, F (K)).

(We are identifying L with the sublattice of I(L) consisting of prin-
cipal ideals.)

Proof. If h : I(L) → K is a meet continuous lattice homomor-
phism, then the restriction h|L : L → F (K) is evidently a lattice ho-
momorphism (since lattices are reducts of meet continuous lattices).
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If g : L → F (K) is a lattice homomorphism, then it is proved in
Lemma 5.1 of [15] that the function

ĝ : I(L)→ K : I 7→
∨
{g(x) | x ∈ I}

is a meet continuous lattice homomorphism whose restriction to L is g.
It is the unique extension of g to I(L), since I(L) is generated under

∨
by L. This proves that restriction to L is a bijection between hom-sets.
The naturality is left as an exercise. (See Chapter IV of [63] for the
method.) �

The adjunction from L to LMC may be composed with the adjunc-
tion from SET to L (given by the free lattice and forgetful functors) to

produce a left adjoint SET free−→ L I−→ LMC to the composite forgetful
functor LMC → L → SET . This adjoint establishes the existence and
structure of of free meet continuous lattices.

Corollary 2.10. If F = FL(X) is the free lattice generated by X,
then I(F) is a free meet continuous lattice over the set {(x] | x ∈ X}.

Since LMC is definable by identities and has free algebras of all
ranks, Birkhoff’s HSP theorem is valid for LMC : a subclass of LMC is
definable by identities if and only if it is closed under the formation
of homomorphic images, subalgebras and products. Hence the proof
of Theorem 2.7 is valid for varieties of meet continuous lattices. Us-
ing known methods it can be shown that the projective subdirectly
irreducible members of LMC are the finite, lower bounded, subdirectly
irreducible lattices satisfying (W). This includes all lattices that are
projective and subdirectly irreducible in L, along with some others
(such as D1).

2.4. Maltsev Conditions

A strong Maltsev condition is a primitive positive sentence in
the language of clones. This means that it is a first-order sentence
of the form “∃∧ (atomic)” about clones. A Maltsev condition is a
countably infinite disjunction

∨
i∈ω σi where the σi are strong Maltsev

conditions that get weaker as i increases (i.e., σi ` σi+1 for all i). A
variety satisfies a (strong) Maltsev condition if its clone does.

The concept of a Maltsev condition can be reformulated in terms
of clone homomorphisms. To each strong Maltsev condition ∃F ∧Σ
corresponds a finite presentation 〈F | Σ〉 of a clone. If U is a variety
whose clone has this presentation, then V satisfies the strong Maltsev
condition ∃F ∧Σ if and only if U ≤ V. Similarly, to each Maltsev con-
dition

∨
i∈ω σi corresponds a sequence · · · ≤ U2 ≤ U1 ≤ U0 of varieties
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with finitely presented clones. A variety V satisfies
∨
i∈ω σi if and only

if Ui ≤ V for some i.
Our practice will be to express Maltsev conditions informally. For

example, we will express the fact that variety V satisfies the strong
Maltsev condition

(2.4) ∃p
(
comp3

2(p, π2
1, π

2
2, π

2
2) ≈ π2

1 & comp3
2(p, π2

2, π
2
2, π

2
1) ≈ π2

1

)
,

which expresses the fact that V has a Maltsev term, by saying that
V has a ternary term p such that the identities p(x, y, y) ≈ x and
p(y, y, x) ≈ x hold in V.

An n-ary element f of a clone C is idempotent if

compn1 (f, π1
1, π

1
1, . . . , π

1
1) = π1

1 .

If C is the clone of a variety V, this means that f(x, x, . . . , x) ≈ x is
satisfied in V. The idempotent elements of C form a subclone, Id(C).
The idempotent reduct of V is the variety Id(V) := Var(Id(Clo(V)))
that is associated to the idempotent subclone of Clo(V). A (strong)
Maltsev condition is idempotent if for each term f in the condition
the identity f(x, x, . . . , x) ≈ x is a consequence of the identities of the
Maltsev condition.

Two (strong) Maltsev conditions are equivalent if they define the
same class of varieties.

Lemma 2.11. Any idempotent strong Maltsev condition is equiva-
lent to one of the form ∃F ∧Σ where F = {h, k}, h is n-ary and k is
n2-ary, and Σ consists of the identities

(i) h(x, x, . . . , x) ≈ x,
(ii) k(x11, . . . , xnn) ≈ h(h(x11, . . . , x1n), . . . , h(xn1, . . . , xnn)), plus
(iii) finitely many identities of the form k(variables) ≈ k(variables).

The proof of this lemma is part of the proof of Lemma 9.4 of [34].
A strong Maltsev condition ∃F ∧Σ is linear if each identity in Σ

has the form p(variables) ≈ q(variables) where p, q ∈ F ∪ {variables},
while a Maltsev condition

∨
i∈ω σi is linear if each σi is.

Lemma 2.12. Any idempotent linear strong Maltsev condition is
equivalent to one of the form ∃F ∧Σ where F = {f}, and Σ consists
of the identities

(i) f(x, x, . . . , x) ≈ x, plus
(ii) finitely many identities of the form f(variables) ≈ f(variables).

This is proved by slightly modifying the proof in [34] of the preceding
lemma.
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All of the Maltsev conditions considered in this monograph are
idempotent and linear, and will usually be expressible in the form
described in Lemma 2.12 using only two variables. We introduce a
notation for such 2-variable Maltsev conditions now.

Let f be an n-ary operation symbol and let N = {1, . . . , n}. For
each U ⊆ N , let fU(x, y) denote the term obtained from f(x1, . . . , xn)
by substituting x for xi if i ∈ U and y for xj if j 6∈ U . Observe that
any identity of the form

f(variables) ≈ f(variables)

that uses only the variable x and y may be rewritten in the form
fU(x, y) ≈ fV (x, y) where U is the set of positions where x appears
on the left of the identity and V is the set of positions where x ap-
pears on the right. This particular identity may be abbreviated by
U ≡ V . In order to encode a family F of 2-variable identities of the
form f(variables) ≈ f(variables), we define B(f) to be the Boolean
algebra of subsets of N equipped with an equivalence relation E where
U ≡E V holds if and only if fU(x, y) ≈ fV (x, y) is a consequence of the
identities in F .

Example 2.13. The statement that p is a Maltsev term for V
may be expressed by saying that V satisfies identities of the form
p(variables) ≈ p(variables) if the idempotence of p is assumed, namely
by p(x, y, y) ≈ p(x, x, x) and p(y, y, x) ≈ p(x, x, x). In this case, N =
{1, 2, 3} and B(p) is the Boolean algebra of Figure 2.3 equipped with

s
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s
s
s
s

s
s
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Q
Q
QQ
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��
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Q
Q
Q
Q
QQ

{1}

{1, 2}

∅

{2}

N

{1, 3}

{3}

{2, 3}

Figure 2.3. B(p)

an equivalence relation E where N ≡E {1} ≡E {3}, since p(x, x, x) ≈
p(x, y, y) ≈ p(y, y, x) are consequences of the starting identities, and
∅ ≡E {1, 2} ≡E {2, 3}, since p(y, y, y) ≈ p(x, x, y) ≈ p(y, x, x) are also
consequences.
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A subset of B(f) is closed if it is a union of E-classes.
The next theorem is due to Walter Taylor.

Theorem 2.14. The following are equivalent for a variety V.

(1) V satisfies a nontrivial idempotent Maltsev condition (i.e., one
that fails in some variety).

(2) V satisfies an idempotent Maltsev condition that fails in the
variety of sets.

(3) For some n, V has an idempotent n-ary term f such that B(f)
has no closed ultrafilter.

Proof. See Corollary 5.3 of [77]. �
We will make frequent use of Theorem 2.15, so we introduce the

following terminology.

Definition 2.15. A term f is a Taylor term for a variety V if
V satisfies f(x, x, . . . , x) ≈ x and enough other identities of the form
fU(x, y) ≈ fV (x, y) so that B(f) has no closed ultrafilter.

Note that the word ‘linear’ does not appear in Conditions (1) and
(2) of Theorem 2.14 although the Maltsev condition from (3) is linear.
The fact that any variety satisfying a nontrivial idempotent Maltsev
condition also satisfies one that is linear is the nontrivial part of the
theorem.

Condition (3) of Theorem 2.14 means that if U is the ultrafilter of
subsets of N containing the singleton {i}, then U is not closed, i.e.,
there is some U ∈ U and some V 6∈ U such that V satisfies fU(x, y) ≈
fV (x, y). Another way to express Condition (3) is that, for each 1 ≤
i ≤ n, V satisfies an identity of the type f(variables) ≈ f(variables)
where all variables are x or y, and x appears in the i-th position on
the left while y appears in the i-th position on the right. An identity
of this type will be called an i-th Taylor identity for f .

A result similar to Taylor’s was discovered by David Hobby and
Ralph McKenzie.

Theorem 2.16. The following are equivalent for a variety V.

(1) V satisfies an idempotent Maltsev condition that fails in the
variety of semilattices.

(2) For some n, V has an idempotent n-ary term f such that B(f)
has no closed, proper, nonempty lattice filter.

Proof. See Lemma 9.5 of [34]. �
Definition 2.17. A term f is a Hobby-McKenzie term for a

variety V if V satisfies f(x, x, . . . , x) ≈ x and enough other identities
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of the form fU(x, y) ≈ fV (x, y) so that B(f) has no closed, proper,
nonempty lattice filter.

The term p from Example 2.13 is a Hobby–McKenzie term, and
therefore also a Taylor term. To see this, suppose that F is a closed,
proper, nonempty lattice filter of B(p). Then since F is a nonempty
filter it contains the top element N . Since F is closed it must contain
{1} (≡E N) and also {3} (≡E N). Since F is a lattice filter, it contains
{1} ∩ {3} = ∅. But any lattice filter containing ∅ is improper.

2.5. The Term Condition

Let A = 〈A;F 〉 be an algebra. An n-ary relation R ⊆ An is com-
patible if it is a subalgebra of An. If B is a subalgebra of A, then
the restriction of a relation R ⊆ An to B is R|B := R ∩ Bn. If δ is
a congruence on A, then R/δ := {(a1/δ, . . . , an/δ) | (a1, . . . , an) ∈ R}.
Both R|B and R/δ are compatible if R is. If δ is a congruence, then R
is δ-closed if R = δ ◦R ◦ δ. (I.e., if a δ b R c δ d implies a R d.)

A compatible, reflexive, symmetric binary relation is called a tol-
erance. We will usually denote tolerances by upper case italic letters:
R, S, T, . . .. A compatible equivalence relation (i.e., a transitive toler-
ance) is a congruence, and congruences will usually be denoted by
lower case Greek letters: α, β, γ, . . .. The tolerance or congruence gen-
erated by set X ⊆ A × A is usually denoted by TgA(X) or CgA(X)
respectively, although if X contains only a few pairs then we may write,
for example, CgA(a, b) or CgA((a, b), (c, d)) instead. If T is a tolerance
on A, then a maximal subset B ⊆ A such that B × B ⊆ T is called a
block of T . If T is in fact a congruence, then a block is the same thing
as a congruence class. A tolerance or congruence is trivial if it is the
equality relation and nontrivial otherwise.

The collection of congruences on A, ordered by inclusion, is an al-
gebraic lattice which is denoted Con(A). Its least and largest elements
are denoted 0 and 1. Meet and join are denoted ∧ and ∨ and are com-
puted by α∧β = α∩β and α∨β = tr.cl.(α∪β) where tr.cl. represents
transitive closure.

An m-ary polynomial operation of A is an operation f : Am → A
such that f(x1, . . . , xm) = tA(x1, . . . , xm, a) for some (m+ n)-ary term
t and some tuple a ∈ An.

If S and T are tolerances on A, then an S, T -matrix is a 2 × 2
matrix of elements of A of the form

[
p q
r s

]
=

[
f(a,u) f(a,v)
f(b,u) f(b,v)

]
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where f(x,y) is an (m + n)-ary polynomial of A, a S b, and u T v.
The set of all S, T -matrices is denoted M(S, T ).

Since tolerances are compatible with all polynomial operations, any
two elements in the same row of an S, T -matrix are T -related and any
two elements in the same column are S-related.

The fact that S and T are symmetric relations implies that M(S, T )
is closed under interchanging rows or columns:
[
p q
r s

]
∈M(S, T )⇔

[
r s
p q

]
∈M(S, T )⇔

[
s r
q p

]
∈M(S, T ) .

If S = T , then M(S, T ) = M(T, T ) is also closed under transpose, as
one sees by interchanging the roles of x and y in the polynomial f(x,y)
that defines a given matrix.

Definition 2.18. Let S and T be tolerances on an algebra A, and
let δ be a congruence on A. If p ≡δ q implies that r ≡δ s whenever

(2.5)

[
p q
r s

]
∈M(S, T ),

then we say that C(S, T ; δ) holds, or S centralizes T modulo δ.

By interchanging the rows of matrices one sees that C(S, T ; δ) holds
if and only if

p ≡δ q ⇐⇒ r ≡δ s
for every S, T -matrix in (2.5).

The S, T -term condition is the condition C(S, T ; 0). There are
other similar conditions called term conditions that we will meet later,
but this is the original one.

When establishing that the implication defining C(S, T ; δ) holds, or
when making use of the fact, we may use underlining to highlight places
in equations or expressions where changes are to be made. For example,
we may write the implication defining C(S, T ; δ) in the following form:
If

f(a,u) ≡δ f(a,v),

then

f(b,u) ≡δ f(b,v) .

The relation C( , ; ) is called the centralizer relation. The
reason that this terminology is used is that when A is a group and
S, T and δ are congruences on A, then C(S, T ; δ) holds if and only if
[S, T ] ≤ δ (see Chapter 1 of [19]).

The basic properties of the centralizer relation are enumerated in
the following theorem.
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Theorem 2.19. Let A be an algebra with tolerances S, S ′, T, T ′ and
congruences α, αi, β, δ, δ

′, δj. The following are true.

(1) (Monotonicity in the first two variables) If C(S, T ; δ) holds
and S ′ ⊆ S, T ′ ⊆ T , then C(S ′, T ′; δ) holds.

(2) C(S, T ; δ) holds if and only if C(CgA(S), T ; δ) holds.
(3) C(S, T ; δ) holds if and only if C(S, δ ◦ T ◦ δ; δ) holds.
(4) If T ∩δ = T ∩δ′, then C(S, T ; δ) holds if and only if C(S, T ; δ′)

holds.
(5) (Semidistributivity in the first variable) If C(αi, T ; δ) holds for

all i ∈ I, then C(
∨
i∈I αi, T ; δ) holds.

(6) If C(S, T ; δj) holds for all j ∈ J , then C(S, T ;
∧
j∈J δj) holds.

(7) If T ∩ (S ◦ (T ∩ δ) ◦ S) ⊆ δ, then C(S, T ; δ) holds.
(8) If β ∧ (α ∨ (β ∧ δ)) ≤ δ, then C(α, β; δ) holds.
(9) Let B be a subalgebra of A. If C(S, T ; δ) holds in A, then

C(S|B, T |B; δ|B) holds in B.
(10) If δ′ ≤ δ, then the relation C(S, T ; δ) holds in A if and only if

C(S/δ′, T/δ′; δ/δ′) holds in A/δ′.

Proof. Item (1) follows from the fact that M(S ′, T ′) ⊆M(S, T ).
For (2), C(CgA(S), T ; δ) =⇒C(S, T ; δ) follows from (1), since S ⊆

CgA(S). For the reverse implication (and also for the proof of item (5)),
we will argue that if Si, is a tolerance, C(Si, T ; δ) holds for all i ∈ I,
and α := tr.cl.

(⋃
i∈I Si

)
, then C(α, T ; δ). (To complete the proof of

(2) we need this only when |I| = 1, while in (5) we need it only when
the Si are congruences.)

Choose any matrix in M(α, T ). If it is

[
p q
r s

]
=

[
f(a,u) f(a,v)
f(b,u) f(b,v)

]
,

then a is related to b by tr.cl.
(⋃

i∈I Si
)
, so there exist tuples a =

a0 Si1 a1 Si2 · · · Sin an = b. These tuples determine matrices

[
pk qk
pk+1 qk+1

]
:=

[
f(ak,u) f(ak,v)
f(ak+1,u) f(ak+1,v)

]
∈ M(Sik+1

, T ).

We must show that p ≡δ q implies r ≡δ s, so assume that p ≡δ q. This is
the same as p0 ≡δ q0, and so by induction (using that C(Sik , T ; δ) holds
for all k) we get that pk ≡δ qk for all k. Therefore r = pn ≡δ qn = s.
This completes the proofs of (2) and (5).

For (3), the implication C(S, δ ◦T ◦δ; δ) =⇒C(S, T ; δ) follows from
(1), since T ⊆ δ ◦ T ◦ δ. For the reverse implication, assume that
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C(S, T ; δ) holds, that
[
p q
r s

]
=

[
f(a,u) f(a,v)
f(b,u) f(b,v)

]
∈M(S, δ ◦ T ◦ δ),

and that p ≡δ q. There exist tuples u′ and v′ such that u δ u′ T v′ δ v.
The matrix [

p′ q′

r′ s′

]
=

[
f(a,u′) f(a,v′)
f(b,u′) f(b,v′)

]

is an S, T -matrix. Moreover,

p′ = f(a,u′) δ f(a,u) = p δ q = f(a,v) δ f(a,v′) = q′.

Since C(S, T ; δ) holds, it follows that r′ ≡δ s′. Hence

r = f(b,u) δ f(b,u′) = r′ δ s′ = f(b,v′) δ f(b,v) = s,

or r ≡δ s. This establishes C(S, δ ◦ T ◦ δ; δ).
For (4), recall that elements in the same row of an M(S, T ) are

T -related. Therefore, if

[
p q
r s

]
∈M(S, T ), then since T ∩ δ = T ∩ δ′

we get that

p ≡δ q ⇐⇒ p ≡T∩δ q ⇐⇒ p ≡T∩δ′ q ⇐⇒ p ≡δ′ q,
and

r ≡δ s ⇐⇒ r ≡T∩δ s ⇐⇒ r ≡T∩δ′ s ⇐⇒ r ≡δ′ s.
Therefore the implication p ≡δ q=⇒ r ≡δ s is equivalent to p ≡δ′
q=⇒ r ≡δ′ s.

For (6), assume that

[
p q
r s

]
∈ M(S, T ). If p ≡ q (mod

∧
δj),

then p ≡ q (mod δj) for all j. Since C(S, T ; δj) holds for all j we get
that r ≡ s (mod δj) for all j, or equivalently that r ≡ s (mod

∧
δj).

This shows that C(S, T ;
∧
j∈J δj) holds.

For (7), choose an S, T -matrix M =

[
p q
r s

]
. Assume that p ≡δ q.

Since the elements in the same row of M are T -related and the elements
in the same column are S-related, we have r S p T ∩δ q S s. Moreover,
r T s since these elements belong to the same row. Together this yields
that r T ∩ (S ◦ (T ∩ δ) ◦ S) s. By the assumption in (7), this implies
that r ≡δ s. This proves (7).

For item (8), if β ∧ (α∨ (β ∧ δ)) ≤ δ, then β ∩ (α ◦ (β ∩ δ) ◦α) ≤ δ,
so C(α, β; δ) holds by (7).

Item (9) holds because any instance of the implication in Defini-
tion 2.18 defining C(S|B, T |B; δ|B) in B is an instance of the implica-
tion defining C(S, T ; δ) in A.
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For item (10), it suffices to observe that, when δ′ ≤ δ,
[
p′/δ′ q′/δ′

r′/δ′ s′/δ′

]
∈M(S/δ′, T/δ′)

if and only if there exist p ≡δ′ p′, q ≡δ′ q′, r ≡δ′ r′, and s ≡δ′ s′ with[
p q
r s

]
∈M(S, T ),

and that p ≡δ q ⇔ p′/δ′ ≡δ/δ′ q′/δ′ and r ≡δ s⇔ r′/δ′ ≡δ/δ′ s′/δ′. �
Definition 2.20. The commutator of S and T , denoted by [S, T ],

is the least congruence δ such that C(S, T ; δ) holds. T is abelian if
[T, T ] = 0. An algebra A is abelian if its largest congruence is.

By Theorem 2.19 (6), the class of all δ such that C(S, T ; δ) holds
is closed under complete meet, so there is a least such δ. This implies
that [S, T ] exists for any two tolerances S and T .

It is a well known fact, easily derivable from the definitions, that A
is abelian if and only if the diagonal of A×A is a class of a congruence
of A×A.

Definition 2.21. The centralizer of T modulo δ, denoted by
(δ : T ), is the largest congruence α on A such that C(α, T ; δ) holds.

By Theorem 2.19 (5), the class of all α such that C(α, T ; δ) holds
is closed under complete join, so there is a largest such α. This implies
that (δ : T ) exists for every δ and T . By Theorem 2.19 (2), the cen-
tralizer (δ : T ) contains every tolerance S such that C(S, T ; δ) holds.

2.6. Congruence Identities

If V is a variety of algebras, then any lattice identity that holds
in the class {Con(A) | A ∈ V} of congruence lattices of algebras
in V is called a congruence identity of V. The congruence va-
riety of V, denoted CON(V), is the subvariety of L generated by
{Con(A) | A ∈ V}, or alternatively is the variety lattices axioma-
tized by the congruence identities that hold in V. Similarly, a lattice
quasi-identity that holds in congruence lattices of members of V is a
congruence quasi-identity of V.

The following theorem will be used in several places in this mono-
graph.

Theorem 2.22. (Cf. [6]) Let Q be a quasi-identity satisfying (W).
The class of varieties satisfying Q as a congruence quasi-identity is
definable by a set of idempotent Maltsev conditions.
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Since congruence lattices are algebraic, and therefore meet con-
tinuous, it is reasonable to discuss meet continuous congruence
identities, which we define to be meet continuous lattice identities
considered as congruence identities. A meet continuous congruence
identity is trivial if it holds in the congruence lattice of every algebra
and nontrivial otherwise. It follows from Corollary 2.10 that free meet
continuous lattices are algebraic, so they are isomorphic to congruence
lattices according to the Grätzer-Schmidt Theorem [26]. Therefore a
meet continuous lattice identity is nontrivial as a congruence identity
if and only if it is nontrivial as a meet continuous lattice identity. Both
statements mean the identity fails in some algebraic lattice.

It is proved in [5] that the class of varieties that satisfy the meet
semidistributive law as a congruence identity is definable by a set of
idempotent Maltsev conditions. An examination of that argument re-
veals that what is really proved is that, modulo the axioms defining
LMC , the meet semidistributive law is equivalent to a meet continu-
ous lattice identity.1 In the next theorem, we prove that many differ-
ent quasi-identities, including SD∧, are equivalent to meet continuous
identities.

Theorem 2.23. Let p, q, r, s, x1, . . . , xn be lattice variables. Define
t := p ∧ (q ∨ r). Let wi(p, q, r), 1 ≤ i ≤ m, be ternary lattice words
such that wi(p, q, r) ≤ q for some i, wj(p, q, r) ≤ r for some j, and
wk(p, q, r) ≤ t for all k in the free lattice FL({p, q, r}). For each i
let x∗i = (xi ∨ s) ∧ t. For arbitrary n-ary lattice words u and v, the
quasi-identity

(2.6)
m∧

i=1

(wi(p, q, r) ≈ s)→ u(x∗1, . . . , x
∗
n) ≈ v(x∗1, . . . , x

∗
n)

is equivalent to an identity in LMC.

Proof. For each i let fi(x) be the polynomial wi(p, q ∨ x, r ∨ x)
of the free meet continuous lattice F0 = FLMC

({p, q, r}). If z ≤ t =
p ∧ (q ∨ r), then the idempotence of lattice words implies that for any
i between 1 and m

(2.7)
z = wi(z, z, z) ≤ wi(p, q ∨ z, r ∨ z) = fi(z)

≤ wi(p, q ∨ t, r ∨ t) ≤ wi(p, q ∨ r, q ∨ r)
≤ p ∧ ((q ∨ r) ∨ (q ∨ r)) = t.

The underlined elements indicate why the principal ideal generated
by t = p ∧ (q ∨ r) is closed under each fi, and each fi is an increasing

1In fact, what is really shown is that the partial lattice P(SD∧) in the SD∧-
configuration is projective relative to LMC .
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function on this ideal. It follows from this that the set of all elements of
the form fi1◦· · ·◦fi`(0), ij ∈ {1, . . . , m}, is an updirected set of elements
below t. The supremum of this set, δw(p, q, r) ∈ F0, w := (w1, . . . , wm),
is therefore the least common fixed point in F0 of the polynomials fi.
Since t = p ∧ (q ∨ r) is a common fixed point of the fi it follows that
δw ≤ t in F0. Now, if ϕ : F0 → L is a surjective homomorphism of meet
continuous lattices for which a = ϕ(p), b = ϕ(q) and c = ϕ(r), then
ϕ(δw(p, q, r)) = δw(a, b, c) is the supremum of all fL

i1 ◦· · ·◦fL
ik

(0), where

fL
i (x) := wL

i (a, b∨x, c∨x). By an argument like the one used in (2.7),
each fL

i is increasing on the principal ideal generated by tL(a, b, c) =
a ∧ (b ∨ c) and maps this ideal into itself. Hence δw(a, b, c) is the least
common fixed point of the polynomials fL

i in L.
For each variable xi, set x+

i := (xi ∨ δw(p, q, r)) ∧ t, which is an
element of F := FLMC

({p, q, r, s, x1, . . . , xn}). We are now prepared to
argue that quasi-identity (2.6) is equivalent to the identity

(2.8) u(x+
1 , . . . , x

+
n ) ≈ v(x+

1 , . . . , x
+
n )

in LMC .
Assume first that L is a meet continuous lattice satisfying (2.8).

To show that L satisfies (2.6), choose any assignment of the variables
{p, q, r, s,x} → L that satisfies the premises of quasi-identity (2.6), and
let ψ : F→ L be the extension of this assignment to a homomorphism.
Equivalently, choose a homomorphism ψ so that if

(ψ(p), ψ(q), ψ(r), ψ(s), ψ(x)) = (a, b, c, d, g),

then wL
i (a, b, c) = d for all i. Define e := ψ(t) = a ∧ (b ∨ c) and

g∗i := ψ(x∗i ) = (gi ∨ d) ∧ e. We must show that uL(g∗) = vL(g∗).
Since wi(p, q, r) ≤ q for some i, wj(p, q, r) ≤ r for some j, and

wk(p, q, r) ≤ (p ∧ (q ∨ r)) ≤ p for all k in F0, it follows that

d = wi(a, b, c) = wj(a, b, c) = wk(a, b, c) ≤ a ∧ b ∧ c
in L. Since d = w1(a, b, c) ≥ a ∧ b ∧ c we even have d = a ∧ b ∧ c.
Therefore fL

i (d) = tLi (a, b ∨ d, c ∨ d) = tLi (a, b, c) = d for all i, yielding
that d is common fixed point the fi in L. Since the meet continuous
sublattice L0 ≤ L that is generated by a, b and c contains d and has
δw(a, b, c) as its least common fixed point of the fi’s, it follows that
δw(a, b, c) ≤ d. Since d = a ∧ b ∧ c ≤ f1(0) ≤ δw(a, b, c), we even have
d = δw(a, b, c). This implies that ψ(x+

i ) = ψ(x∗i ) = g∗i . This gives us
the desired result

uL(g∗) = ψ(u(x+)) = ψ(v(x+)) = vL(g∗),

where the middle equality is from (2.8).
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Now suppose conversely that L satisfies (2.6). To verify that L
satisfies (2.8), choose any variable assignment in L and extend it to a
homomorphism ψ : F→ L. We must show that ψ(u(x+)) = ψ(v(x+)).
Since the variable s does not appear (2.8) we need only consider ho-
momorphisms ψ for which ψ(s) = ψ(δw(p, q, r)), i.e., those of the form

(ψ(p), ψ(q), ψ(r), ψ(s), ψ(x)) = (a, b, c, δw(a, b, c), g).

Under such homomorphisms

ψ(x+
i ) = ψ(x∗i ) = (gi ∨ δw(a, b, c)) ∧ (a ∧ (b ∨ c)).

The element δ := δw(a, b, c) is the least common fixed point of
the polynomials fL

i (x) := wL(a, b ∨ x, c ∨ x) in the meet continuous
sublattice of L generated by a, b and c. Thus, if bδ := b ∨ δ and
cδ := c ∨ δ, we get that

δ = fL
i (δ) = wi(a, b ∨ δ, c ∨ δ) = wi(a, b

δ, cδ)

for all i. Thus, each premise wi(a, b
δ, cδ) = δ of quasi-identity (2.6) is

satisfied by the variable assignment ψδ : (p, q, r, s,x) 7→ (a, bδ, cδ, δ, g).
Since L satisfies (2.6), we get that

(2.9) uL(ψδ(x∗)) = vL(ψδ(x∗))

holds in L, where

ψδ(x∗i ) = (gi ∨ δ) ∧ (a ∧ (bδ ∨ cδ)).
But δw(p, q, r) ≤ p ∧ (q ∨ r) in FLMC

({p, q, r}), so δ = δw(a, b, c) ≤
a ∧ (b ∨ c) in L. This yields the last equality in

a ∧ (b ∨ c) ≤ a ∧ (bδ ∨ cδ) = a ∧ (b ∨ c ∨ δ) = a ∧ (b ∨ c).
This shows that a ∧ (bδ ∨ cδ) = a ∧ (b ∨ c), so ψδ(x∗i ) = (gi ∨ δ) ∧ (a ∧
(b ∨ c)) = ψ(x+

i ). From this and (2.9) we derive that

ψ(u(x+)) = uL(ψδ(x∗)) = vL(ψδ(x∗)) = ψ(v(x+)),

as desired. This proves that (2.8) holds in L. �
Remark 2.24. If L is meet continuous and satisfies quasi-identity

(2.6), then for every homomorphism ψ : F→ L for which (p, q, r, s,x) 7→
(a, b, c, d, g) and wi(a, b, c) = d for all i, it must be that d is below
a ∧ (b ∨ c) =: e. Call I := I[d, e] a “bad interval” in L if it arises
in this way from elements satisfying the premises of (2.6). For each
i, ψ(x∗i ) = (gi ∨ d) ∧ e ∈ I, and conversely for any h ∈ I we have
h = ψ(x∗i ) if ψ assigns h to xi. Thus, ψ(x∗i ) may be viewed as a typical
element of I. Altogether this means that the premises of (2.6) identify
which intervals are bad, and the quasi-identity itself asserts that all
bad intervals satisfy the identity u ≈ v.
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If we choose m = n = 2, w1(p, q, r) = p ∧ q, w2(p, q, r) = p ∧ r,
then the bad intervals are the SD∧-failures. If u(x1, x2) = x1 and
v(x1, x2) = x2, then (2.6) asserts precisely that all SD∧-failures satisfy
x1 ≈ x2, i.e., they are trivial. These choices for wi, u and v show that
the meet semidistributive law is equivalent to a quasi-identity of type
(2.6), hence to a meet continuous identity.

Consider choosing the premises of (2.6) in the same way as in the
previous paragraph, but allowing u ≈ v to be some other lattice iden-
tity. We obtain from Theorem 2.23 that the class of meet continuous
lattices whose SD∧-failures satisfy u ≈ v is a subvariety of LMC .

Now consider modifying the choice of the premises of (2.6) from our
earlier choice, but keeping u(x1, x2) = x1 and v(x1, x2) = x2. In this
case, (2.6) still asserts that the bad intervals are trivial, but the bad
intervals need not be the SD∧-failures. Instead, the bad intervals are
those of the form I[d, e] where for some a, b, c ∈ L we have wi(a, b, c) = d
for all i and e = a ∧ (b ∨ c). A more direct way of asserting that I[d, e]
is trivial is to assert that e = d (where e = a∧ (b∨ c)). This is achieved
by rewriting quasi-identity (2.6) in the form

(2.10)
m∧

i=1

(wi(p, q, r) ≈ s)→ ((p ∧ (q ∨ r)) = s) .

Quasi-identity (2.10) is equivalent modulo the identities defining lattice
theory to quasi-identity (2.6) when u(x1, x2) = x1 and v(x1, x2) = x2.
In particular, Theorem 2.23 proves that a quasi-identity obtained from
the meet semidistributive law,

((p ∧ q) ≈ s)&((p ∧ r) ≈ s)→ ((p ∧ (q ∨ r)) = s),

by adding additional premises of the form wi(p, q, r) ≈ s is equivalent
to a meet continuous identity.

By examining the proof of Theorem 2.23 one finds that the bad
intervals in L associated to a quasi-identity of type (2.6) or (2.10) are
those of the form I[d, e] where for some a, b, c ∈ L it is the case that
d = δw(a, b, c) and e = a ∧ (b ∨ c). Since quasi-identity (2.10) asserts
only that bad intervals are trivial, a simpler meet continuous identity
equivalent to (2.10) is

(2.11) δw(p, q, r) ≈ (p ∧ (q ∨ r)) .
It is not hard to describe explicitly the meet continuous identity that

is equivalent to the meet semidistributive law. Define lattice words
in the variables p, q, r by q0 = q, r0 = r, qn+1 = q ∨ (p ∧ rn), and
rn+1 = r ∨ (p ∧ qn). Let qω =

∨
n<ω qn and let rω =

∨
n<ω rn.
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Corollary 2.25. A meet continuous lattice is meet semidistribu-
tive if and only if it satisfies the identity

(2.12) p ∧ (q ∨ r) ≈ p ∧ qω .
Proof. This is an instance of the comments in the final paragraph

of Remark 2.24. For the choices w1(p, q, r) = p ∧ q and w2(p, q, r) =
p ∧ r the polynomials fi that occur in the proof of Theorem 2.23 are
f1(x) = p∧ (q ∨x) =: g(x) and f2(x) = p∧ (r∨x) =: h(x). Since these
are idempotent polynomials of FLMC

(p, q, r), the words of the form
fi1 ◦ · · · ◦ fi`(0) that occur in the preceding proof reduce to alternating
compositions (gh)k(0), (hg)k(0), g(hg)k(0), or h(gh)k(0). The join of
these words is δw(p, q, r) =

∨
k<ω(gh)k(0) =

∨
k<ω(hg)k(0). But g(0) =

p ∧ q0, h(0) = p ∧ r0, g(p ∧ rn) = p ∧ qn+1 and h(p ∧ qn) = p ∧ rn+1,
so δw(p, q, r) =

∨
k odd p ∧ qk = p ∧ qω by meet continuity, and also

δw(p, q, r) =
∨
k even p ∧ rk = p ∧ rω. Hence the meet semidistributive

law is equivalent to p ∧ qω ≈ p ∧ (q ∨ r) or to p ∧ rω ≈ p ∧ (q ∨ r) for
meet continuous lattices. �

This proof shows that p ∧ qω ≈ p ∧ rω, so identity (2.12) can be
written as a weakened distributive law:

p ∧ (q ∨ r) ≈ (p ∧ qω) ∨ (p ∧ rω) .



CHAPTER 3

Strong Term Conditions

In this chapter we introduce the term conditions that define strongly
abelian and strongly rectangular congruences. Our purpose is to show
that a variety satisfies a nontrivial idempotent Maltsev condition if and
only if it has no member with a nonzero strongly abelian congruence,
or equivalently has no member with a nonzero strongly rectangular
congruence.

3.1. Varieties Omitting Strongly Abelian Congruences

Ralph McKenzie introduced the notion of “strong abelianness” in
[66], and, with David Hobby, showed in [34] that it is a natural and
useful concept in the study of finite algebras. McKenzie also discov-
ered a quite different abelianness concept, called “rectangularity” in
[54], which made sense for finite subdirectly irreducible algebras with
nonabelian monolith, and which has applications to the study of resid-
ually small varieties.

In [49], we required a commutator theory associated to the strong
abelianness concept. In the process of developing one, we discovered
a new natural and useful type of abelianness resembling McKenzie’s
rectangularity concept that we will call in this monograph “strong rect-
angularity”. In [49] we developed a commutator theory for strong rect-
angularity, too. In this chapter we explore these two theories further.
In Chapter 5 we will introduce a new definition for McKenzie’s original
rectangularity concept that makes sense for any algebra, and initiate
the development of a commutator theory for it.

It is important to draw attention to the fact that we used the term
“rectangularity” in [49] for what will henceforth be called “strong rect-
angularity”.

Definition 3.1. Let S and T be tolerances on an algebra A, and
let δ be a congruence on A. If q ≡δ r implies that r ≡δ s whenever

(3.1)

[
p q
r s

]
∈M(S, T ),

36
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then we say that SR(S, T ; δ) holds, or S strongly rectangulates T
modulo δ. We say that S(S, T ; δ) holds, or S strongly centralizes
T modulo δ if SR(S, T ; δ) and C(S, T ; δ) both hold.

A tolerance T is strongly rectangular if SR(T, T ; 0) holds, and
is strongly abelian if S(T, T ; 0) holds.

By interchanging the rows and columns of matrices one sees that
SR(S, T ; δ) holds if and only if

q ≡δ r ⇐⇒ p ≡δ q ≡δ r ≡δ s ⇐⇒ p ≡δ s.
for every S, T -matrix in (3.1). It follows from this that SR(S, T ; δ) is
equivalent to SR(T, S; δ).

Now, and later, we must consider the issue of whether nonobvious
relationships hold among the term conditions that we introduce. For
example, is every abelian tolerance strongly abelian?1 There is an all-
purpose example for answering this type of question, which may be
used to demonstrate the independence of any combination of the term
conditions that we define in this monograph.

Example 3.2. Let X be a set and letM⊆ X2×2 be a set of 2× 2
matrices with entries in X. For M ∈ M, let YM = {aM , bM , uM , vM}.
Let Y = ∪M∈MYM . Let A be the disjoint union X ∪Y ∪{0}. For each

M =

[
p q
r s

]
∈ M define a binary operation fM on A by

fM(x, y) :=





p if (x, y) = (aM , uM);
q if (x, y) = (aM , vM);
r if (x, y) = (bM , uM);
s if (x, y) = (bM , vM); and
0 otherwise.

Let A(M) = 〈A; {fM | M ∈ M}〉, R = TgA({(aM , bM) | M ∈ M}),
S = TgA({(uM , vM) | M ∈ M}), and T = TgA(R ∪ S).

Claim 3.3. The following hold.

(1) M(R, S) consists only of the trivial R, S-matrices, namely those
of the form

[
p p
q q

]
and

[
r s
r s

]

with (p, q) ∈ R and (r, s) ∈ S, together with the closure of M
under interchanging rows and columns.

1No.
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(2) M(T, T ) consists only of the trivial T, T -matrices together with
the closure of M under interchanging rows and columns and
under transpose.

We leave the proof of this claim as an exercise, guided by the fol-
lowing comments.

(i) The trivial matrices come from using a projection operation
as the term in the matrix.

(ii) Any nontrivial composition of fM ’s is zero, so only fM(x, y)
and fM(y, x) can be used to create a nontrivial matrix. How-
ever fM(y, x) does not produce any nontrivial R, S-matrices.

We also leave the verification of the following as an exercise: the claim
remains true if you replace R, S and T by the congruences they gener-
ate. And, as a final exercise: any failure of any term condition intro-
duced in this monograph must involve a nontrivial R, S or T, T -matrix.

What this means is that when considering relationships between
term conditions we may ignore any algebraic considerations and think
completely set-theoretically. If it is possible to write down matrices
whose patterns of entries formally conflict with the satisfaction of one
term condition but do not formally conflict with the satisfaction of
another, then it is possible to build an algebra that has matrices with
these properties (subject to the restrictions of (1) and (2) of Claim 3.3).

For example, to show that there exists an algebra that has an
abelian tolerance that is not strongly abelian, it is enough to observe

that any T, T -matrix of the form M =

[
p q
r s

]
=

[
0 1
1 0

]
formally

conflicts with the satisfaction of SR(T, T ; 0) (since q = r 6= s), but
does not formally conflict with C(T, T ; 0) (even after interchanging the
rows or columns, or taking the transpose). This suggests that we take
X = {0, 1} andM = {M}. By Claim 3.3, the nontrivial T, T -matrices
of A(M) are [

0 1
1 0

]
and

[
1 0
0 1

]
.

This implies that the tolerance T on A(M) is abelian but not strongly
rectangular (hence not strongly abelian).

In Lemma 2.2 of [49] we state and prove a result for SR( , ; )
similar to Theorem 2.19 for C( , ; ). These two results can be com-
bined to produce a similar result for S( , ; ). Here we describe only
the results about the strong centrality relation and the strong rectan-
gulation relation that will be used in this chapter.
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Theorem 3.4. Let A be an algebra with tolerances S, S ′, T, T ′ and
congruences δ, δ′, δj. Let Q = S or SR. The following are true.

(1) If Q(S, T ; δ) holds and S ′ ⊆ S, T ′ ⊆ T , then Q(S ′, T ′; δ) holds.
(2) If Q(S, T ; δj) holds for all j ∈ J , then Q(S, T ;

∧
j∈J δj) holds.

(3) Let B be a subalgebra of A. If Q(S, T ; δ) holds in A, then
Q(S|B, T |B; δ|B) holds in B.

(4) If δ′ ≤ δ, then the relation Q(S, T ; δ) holds in A if and only if
Q(S/δ′, T/δ′; δ/δ′) holds in A/δ′.

(5) If T ∩ (((S ◦ T ) ∩ δ) ◦ S) ⊆ δ, then SR(S, T ; δ) holds. If
T ∩ (S ◦ (T ∩ δ) ◦S) ⊆ δ also holds, then S(S, T ; δ) also holds.

Proof. Items (1)–(4) are proved in exactly the same way as items
(1), (6), (9) and (10) of Theorem 2.19.

For item (5), choose any S, T -matrix M =

[
p q
r s

]
. Assume that

r ≡δ q. Since the elements in the same row of M are T -related and
the elements in the same column are S-related, we have r S p T q
and r δ q, so r (S ◦ T ) ∩ δ q. Since r (S ◦ T ) ∩ δ q S s and r T s
we have (r, s) ∈ T ∩ (((S ◦ T ) ∩ δ) ◦ S) ⊆ δ. Since M was chosen
arbitrarily, SR(S, T ; δ) holds. If now T ∩ (S ◦ (T ∩ δ) ◦ S) ⊆ δ also
holds, then C(S, T ; δ) also holds by Theorem 2.19 (7). Hence S(S, T ; δ)
also holds. �

Theorem 3.4 (2) implies that for Q = S or SR there is a least δ
such that Q(S, T ; δ) holds, and we denote the least such δ by [S, T ]Q.

Lemma 3.5. Let V be a variety, let F = FV(x, y) be the free V-
algebra over X = {x, y}, and let θ = CgF(x, y). Let Q = S or SR.
The following are equivalent.

(1) There exists an algebra A ∈ V that has a nonzero Q-abelian
congruence (i.e., a congruence α such that [α, α]Q = 0).

(2) (x, y) /∈ [θ, θ]Q.

Now let T be the tolerance on F generated by the pair (x, y). The
following are equivalent.

(3) There exists an algebra A ∈ V that has a nonzero Q-abelian
tolerance (i.e., a tolerance S such that [S, S]Q = 0).

(4) (x, y) /∈ [T, T ]Q.

Proof. Both halves of the lemma are proved in the same way, so
we prove the first half only.

Assume that α is a nonzero Q-abelian congruence on A. Choose
(a, b) ∈ α with a 6= b. Then from Theorem 3.4 (3) and (1) we get that
if B is the subalgebra of A generated by {a, b} and β = CgB(a, b),
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then β is Q-abelian. Let h : F → B be the homomorphism sending x
to a and y to b. This homomorphism is surjective since B is generated
by a and b. Let κ = ker(h) and let λ = h−1(β). Since (h(x), h(y)) =
(a, b) ∈ β \0 we have (x, y) ∈ λ\κ, which means that θ ≤ λ and θ 6≤ κ.
From Theorem 3.4 (4) we know that Q(λ, λ; κ) holds in F if and only
if Q(λ/κ, λ/κ; 0) holds in F/κ. But it does, since λ/κ corresponds
to β under the natural isomorphism of F/κ with B. Therefore, by
Theorem 3.4 (1), we derive that Q(θ, θ; κ) holds. We have Q(θ, θ; θ)
by Theorem 3.4 (5), and therefore Q(θ, θ; κ ∧ θ) by Theorem 3.4 (2).
This proves that [θ, θ]Q ≤ κ ∧ θ < θ, so (x, y) /∈ [θ, θ]Q.

On the other hand, if (x, y) /∈ [θ, θ]Q, then Theorem 3.4 (4) guaran-
tees that θ/[θ, θ]Q is a Q-abelian congruence on F/[θ, θ]Q that relates
the distinct elements x/[θ, θ]Q and y/[θ, θ]Q. This shows that V con-
tains an algebra with a nonzero Q-abelian congruence. �

Our goal in this section is to prove that the four conditions of
Lemma 3.5 are equivalent to each other, and that when Q = S the
conditions hold for a variety if and only if the variety has no Taylor
term (Definition 2.15). This is also true when Q = SR, and that will
be proved in the next section. To prove the equivalence of (1) and (2)
with (3) and (4) we start by analyzing the relationship between the
congruence θ and the tolerance T from Lemma 3.5. This is done in a
little more generality than is immediately necessary, in that the next
lemma considers free algebras on more than two variables, but this will
allow us to avoid the need to generalize the result later.

Lemma 3.6. Let V be any variety and let F = FV(X) be the free
V-algebra generated by X. Let E be an equivalence relation on X, and
let τ : X → X be a transversal for E. That is, τ is a function from X
to X satisfying

(i) x E τ(x), and
(ii) x E y=⇒ τ(x) = τ(y).

Let θ = CgF(E) and T = TgF(E). The following hold.

(1) θ is the kernel of the endomorphism h : F → F induced by
τ : X → X.

(2) (a, h(a)) ∈ T for any a ∈ F .
(3) T ◦ T = θ.
(4) If B := {u(x) ∈ F | u is an idempotent term}, E = X × X,

and τ(X) = {x}, then B = x/θ and B is the unique T -block
containing x.

Proof. Observe that the fact that τ is a transversal for E implies
that τ ◦ τ = τ and E = ker(τ).
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We prove (2) first. If a ∈ F , then a = t(x1, . . . , xn) for some term t.
Since T is a compatible relation containing (xi, τ(xi)) for every i, it also
contains t((x1, τ(x1)), . . . , (xn, τ(xn))) = (t(x), h(t(x))) = (a, h(a)).

For (1), the fact that h is induced by an idempotent function on
generators implies that h is an idempotent endomorphism, therefore h
is a transversal for ker(h). Since ker(τ) ⊆ ker(h) we have θ ⊆ ker(h).
It follows that every θ-block contains at most one element of im(h). On
the other hand, every θ-block contains at least one element of im(h),
since if a is in a θ-block B, then h(a) is certainly in im(h), while
(a, h(a)) ∈ T ⊆ θ by (2). Thus h(a) ∈ im(h)∩B. This shows that h is
also a transversal for θ. Since comparable equivalence relations with a
common transversal are equal, θ = ker(h).

For (3), T ◦T ⊆ CgF(T ) = θ, so it is enough to show that T ◦T ⊇ θ.
If (a, b) ∈ θ, then h(a) = h(b). By (2), we have

a T h(a) = h(b) T b ,

proving that (a, b) ∈ T ◦ T , indeed.
For (4), it is clear that (x, u(x1, . . . , xn)) ∈ θ = ker(h) if and only if

u(x, x, . . . , x) = h(u(x1, . . . , xn)) = h(x) = x

in F, which holds if and only if u is idempotent. Thus B = x/θ,
as claimed. If u(x1, . . . , xn) and v(x1, . . . , xn) are arbitrarily chosen
idempotent terms, then using the term

u(v(x11, . . . , x1n), . . . , v(xn1, . . . , xnn)) ,

and the fact that (xi, xj) ∈ E ⊆ T for all i and j, we derive that

u(x1, . . . , xn) = u(v(x1, . . . , x1), . . . , v(xn, . . . , xn))
≡T u(v(x1, . . . , xn), . . . , v(x1, . . . , xn))
= v(x1, . . . , xn) .

Thus B is contained in a T -block. That it is the unique T -block con-
taining x follows from the fact that B = x/θ is a θ-block (so no element
in F − B is T -related to any element of B). �

Lemma 3.7. Let V be a variety and let F = FV(x, y) be the free V-
algebra generated by {x, y}. Let θ = CgF(x, y) and T be the tolerance
of F generated by (x, y). Let B = x/θ.

(1) Let ρ be a congruence on F such that SR(T, T ; ρ) holds. If
[
p q
r s

]
∈M(θ, θ)

and p, q, r, s ∈ B, then q ≡ρ r =⇒ r ≡ρ s.
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(2) Let ρ be a congruence on F such that S(T, T ; ρ) holds. If
[
p q
r s

]
∈M(θ, θ)

and p, q, r, s ∈ B, then p ≡ρ q =⇒ r ≡ρ s.
Proof. Choose any θ, θ-matrix

[
p q
r s

]
=

[
t(a, c) t(a,d)
t(b, c) t(b,d)

]
.

Let h : F → F be the endomorphism determined by x 7→ x, y 7→ x.
The assumption a ≡θ b is equivalent to h(a) = h(b), and similarly
c ≡θ d is equivalent to h(c) = h(d) (where by h(a), etc., we mean that
we apply the function h componentwise). Consider the following 4× 4
matrix:



t(a, c) t(a, h(c)) = t(a, h(d)) t(a,d)
t(h(a), c) t(h(a), h(c)) = t(h(a), h(d)) t(h(a),d)
‖ ‖ ‖ ‖

t(h(b), c) t(h(b), h(c)) = t(h(b), h(d)) t(h(b),d)
t(b, c) t(b, h(c)) = t(b, h(d)) t(b,d)



.

We claim that the four elements in the middle are equal to x. Indeed,
the assumption that p, q, r, s ∈ B implies that h(p) = h(q) = h(r) =
h(s) = x. Therefore, for example,

t(h(b), h(d)) = h(t(b,d)) = h(s) = x .

Note also that the four 2× 2 matrices in the corners are T, T -matrices,
since u and h(u) are T -related componentwise by Lemma 3.6 (2). All
elements of this 4× 4 matrix are contained in B, because all elements
are θ-related, the corners are in B by assumption, and B is a block
of θ.

Next, let k : F → F be the endomorphism of F that sends x to y
and y to y. Consider the analogous 4 × 4 matrix with respect to k.
All the statements above remain true with k in place of h, with the
exception that in this case the four elements in the middle are equal
to y, not x. Now apply q(x, y) to these two matrices, the first matrix
in the first argument, the second matrix in the second argument. This
produces a 4×4 matrix which, after deleting one of the doubled middle
columns and one of the doubled middle rows, is a 3 × 3 matrix with
certain known entries:

J =



p i q
j q `
r m s


 .
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Indeed, the middle element is q(x, y) = q, the element in the upper
left corner is q(p, p) = p, since q is idempotent, and a similar argument
proves that in the other corners we get q, r and s. It will not matter
in this argument what i, j, `, m are. The four 2 × 2 matrices in the
corners of the 3× 3 matrix J are still T, T -matrices.

To prove (1), we have assumed that q ≡ρ r. We have also assumed

that SR(T, T ; ρ) holds, so from the T, T -matrix

[
i q
q `

]
in the upper

right corner of J we derive that q ≡ρ `. From the matrix

[
j q
r m

]
in

the lower left corner of J (and the assumption that q ≡ρ r) we get that
r ≡ρ m. Thus ` ≡ρ q ≡ρ r ≡ρ m, so since the cross diagonal entries

of the T, T -matrix

[
q `
m s

]
in the lower right corner are ρ-related we

deduce that m ≡ρ s. Thus r ≡ρ m ≡ρ s, and (1) is proved.
To prove (2), we have assumed that p ≡ρ q. We have also assumed

that S(T, T ; ρ) holds, and therefore RS(T, T ; ρ) and C(T, T ; ρ) both

hold. From the T, T -matrix

[
i q
q `

]
in the upper right corner of J

we get by strong rectangularity that q ≡ρ `. From the T, T -matrix[
i p
q j

]
, which is obtained from the T, T -matrix in the upper left

corner of J by switching columns, we get (from p ≡ρ q) that q ≡ρ j.
Now that we have j ≡ρ q and q ≡ρ ` , we apply C(T, T ; ρ) to the
matrices [

j q
r m

]
and

[
q `
m s

]

from the bottom two corners of J to obtain r ≡ρ m and m ≡ρ s.
Therefore r ≡ρ m ≡ρ s, and (2) is proved. �

Our next task is to describe how to construct the Q-commutator
[S, T ]Q of two tolerances where Q = S or SR. Fix the choice of
Q ∈ {S,SR}. Let A be an algebra, and let S and T be tolerances
of A. Inductively define binary relations τn on A as follows. Let τ0 be
the equality relation. If τn is defined, let τn+1 be the symmetric and
transitive closure of the set of all pairs that can be obtained in one of
the following two ways. For each matrix

[
p q
r s

]
∈M(S, T ) ,

(1) if Q = S or SR and q ≡τn r, then put the pair (r, s) into τn+1;
(2) if Q = S and p ≡τn q, then also put the pair (r, s) into τn+1.
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Let τ =
⋃
n<ω τn.

Lemma 3.8. [S, T ]Q = τ .

Proof. The set of S, T -matrices is closed under the component-
wise application of unary polynomials of A, so inductively the same
property holds for each of the τn’s. Since τn is a symmetric, transitive
relation and is closed under the application of unary polynomials, it is
a congruence. Since [

p q
p q

]
∈M(S, T ) ,

it follows that, if (p, q) ∈ τn, then (p, q) ∈ τn+1, by item (1) of the
definition of τn+1 above. Therefore τn ≤ τn+1 for every n, which implies
that the union τ =

⋃
n<ω τn of this ascending chain of congruences on

A is also a congruence on A.
Let δ = [S, T ]Q. We argue by induction that τn ≤ δ for all n. This

is trivially true if n = 0, so suppose that τn ≤ δ for some fixed n and
that (r, s) is one of the generators of τn+1. If (r, s) ∈ τn+1 because
of reason (1) preceding the statement of this lemma, then there is a
matrix [

p q
r s

]
∈M(S, T ) ,

such that q ≡τn r. We have q ≡δ r (since τn ≤ δ) and also Q(S, T ; δ)
(hence SR(S, T ; δ)) since δ = [S, T ]Q. Therefore we have (r, s) ∈ δ.
If (r, s) ∈ τn+1 because of reason (2), then we must have Q = S and
so C(S, T ; δ) holds. Now a similar argument shows that (r, s) ∈ δ.
This shows that δ contains all the generators of τn+1, so τn+1 ≤ δ. By
induction τn ≤ δ for all n, so τ ≤ δ = [S, T ]Q.

To finish the proof we must verify that [S, T ]Q ≤ τ , and for this it
suffices to show that Q(S, T ; τ) holds. Choose any S, T -matrix

[
p q
r s

]
,

and assume that q ≡τ r. Then q ≡τn r for some n, so from item (1) pre-
ceding the lemma we have (r, s) ∈ τn+1 ≤ τ . Thus SR(S, T ; τ) holds,
and [S, T ]Q = τ when Q = SR. If Q = S, then a similar argument
using (2) in place of (1) shows that C(S, T ; τ) holds, so S(S, T ; τ) holds
(and so [S, T ]Q = τ when Q = S). �

Now we are in position to prove that the four conditions of Lemma 3.5
are equivalent.

Lemma 3.9. Let V be any variety, and let Q = S or SR. The
following are equivalent.
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(1) Some algebra in V has a nonzero Q-abelian congruence.
(2) Some algebra in V has a nonzero Q-abelian tolerance.

Proof. Denote by F the free V-algebra generated by {x, y}, by T
the tolerance of F generated by (x, y), and by θ the congruence of F
generated by (x, y). Let B = x/θ. According to Lemma 3.5, we must
establish that (x, y) /∈ [θ, θ]Q if and only if (x, y) /∈ [T, T ]Q. Since
x, y ∈ B, this will follow if we show that the restrictions of the relevant
congruences to B are equal, i.e., if we show that,

[θ, θ]Q|B = [T, T ]Q|B.
We proceed to do this.

Since T ⊆ θ we have [T, T ]Q|B ⊆ [θ, θ]Q|B, so we only need to verify
the reverse inclusion. Let ρ = [T, T ]Q. Build τ = [θ, θ]Q according to
the recipe described preceding Lemma 3.8. We argue by induction
that τn|B ⊆ ρ. This is clear for n = 0. Suppose that n ≥ 0 and that
τn|B ⊆ ρ. Choose any (u, v) ∈ τn+1|B. By the definition of τn+1, there
exists a chain u = u1, u2, . . . , uk = v such that for every 1 ≤ i < k the
pair (ui, ui+1) or the pair (ui+1, ui) is produced by rule (1) or (2) of the
definition of τn+1. That is, there exists a θ, θ-matrix

[
p q
r s

]

such that {ui, ui+1} = {r, s}, and either (q, r) or (p, q) is contained
in τn. We want to show that ui ≡ρ ui+1.

As u ∈ B and τ ≤ θ, every ui belongs to B. Hence the entries of the
θ, θ-matrix above are in B, too. In the first case, when (q, r) ∈ τn we
therefore have that (q, r) ∈ ρ by the induction assumption. Then (1) of
Lemma 3.7 shows that (r, s) ∈ ρ as desired. In the second case, when
(p, q) ∈ τn (which only arises when Q = S) we use (2) of Lemma 3.7
to reach the same conclusion. Thus the induction step, and hence the
proof of the lemma is complete. �

The next task we set for ourselves is to show that a variety has no
member with a strongly abelian tolerance if and only if the variety has
a Taylor term. To prove this we need a description of the T, T -matrices
where T is the tolerance on FV(x, y) generated by (x, y).

Lemma 3.10. Let V be a variety, F = FV(x, y) be the free V-algebra
generated by {x, y}, and let T be the tolerance of F generated by (x, y).
The T, T -matrices in F are exactly the matrices of the form

[
f(x, y, x, y, x, y) f(x, x, x, y, y, y)
f(y, y, x, x, x, y) f(y, x, x, x, y, y)

]
,
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where f is a sixary term.

Proof. A typical T, T -matrix has the form[
g(a, c) g(a,d)
g(b, c) g(b,d)

]

where (ai, bi) ∈ T , (cj, dj) ∈ T , and (we may assume) g is a term. Since
T is the subuniverse of F 2 generated by (x, y), (y, x), (x, x) and (y, y),
a typical pair in T has the form

r((x, y), (y, x), (x, x), (y, y)) = (r(x, y, x, y), r(y, x, x, y))

for some 4-ary term r. Therefore a typical T, T -matrix may be written
as [

g(r(x, y, x, y), s(x, y, x, y)) g(r(x, y, x, y), s(y, x, x, y))
g(r(y, x, x, y), s(x, y, x, y)) g(r(y, x, x, y), s(y, x, x, y))

]
.

If we define f(x1, . . . , x6) := g(r(x1, x4, x3, x6), s(x5, x2, x3, x6)), then
this matrix is the one described in the lemma. �

Lemma 3.11. If no algebra in the variety V has a nonzero strongly
abelian tolerance, then V satisfies a nontrivial idempotent Maltsev con-
dition.

Proof. Let F be the free V-algebra generated by {w, z}, let T
be the tolerance of F generated by (w, z), and let B be the T -block
w/CgF(w, z). For each element u ∈ F choose and fix a binary term
u(x, y) such that u(w, z) = u. Build τ =

⋃
n<ω τn = [T, T ]S using

the method described before Lemma 3.8. For each pair (u, v) ∈ τ
we shall define a finite set of equations Σ(u, v). If (u, v) ∈ τ0, let
Σ(u, v) = {u(x, y) ≈ v(x, y)}. To define Σ(u, v) when (u, v) ∈ τn+1−τn,
choose and fix a finite sequence u = u1, u2, . . . , uk+1 = v of elements
of F such that for each i either (ui, ui+1) or (ui+1, ui) is a generating
pair for τn+1. Generating pairs for τn+1 come from T, T -matrices, and
we know from Lemma 3.10 that the T, T -matrices in F are exactly the
matrices of the form[

p q
r s

]
=

[
f(w, z, w, z, w, z) f(w,w, w, z, z, z)
f(z, z, w, w, w, z) f(z, w, w, w, z, z)

]
.

Therefore for each i between 1 and k there is a sixary term fi such that

(3.2) {ui, ui+1} = {ri, si} = {fi(z, z, w, w, w, z), fi(z, w, w, w, z, z)}
where one of the following “side conditions” holds:

(fi(w,w, w, z, z, z), fi(z, z, w, w, w, z)) = (qi, ri) ∈ τn, or(3.3)

(fi(w, z, w, z, w, z), fi(w,w, w, z, z, z)) = (pi, qi) ∈ τn.(3.4)
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Let (r◦i , s
◦
i ) := (ri, si) if (ri, si) = (ui, ui+1) and let (r◦i , s

◦
i ) := (si, ri) if

(ri, si) = (ui+1, ui). In either case, r◦i = ui and s◦i = ui+1 in F.
Define Σ(u, v) to be the set of the following identities.

(i) u(x, y) ≈ r◦1(x, y) and s◦k(x, y) ≈ v(x, y).
(ii) s◦i (x, y) ≈ r◦i+1(x, y) for each 1 ≤ i ≤ k.

(iii) pi(x, y) ≈ fi(x, y, x, y, x, y), qi(x, y) ≈ fi(x, x, x, y, y, y),
ri(x, y) ≈ fi(y, y, x, x, x, y), and si(x, y) ≈ fi(y, x, x, x, y, y).

(iv) The identities in Σ(qi, ri) for each i whose side condition is
(3.3), along with qi(x, y) ≈ fi(x, x, x, y, y, y) and ri(x, y) ≈
fi(y, y, x, x, x, y).

(v) The identities in Σ(pi, qi) for each i whose side condition is
(3.4), along with pi(x, y) ≈ fi(x, y, x, y, x, y) and qi(x, y) ≈
fi(x, x, x, y, y, y).

The identities in (i) and (ii) express that the pairs (r◦i (w, z), s
◦
i (w, z))

form a directed chain connecting u to v, the identities in (iii) ex-
press that the pair (r◦i (w, z), s

◦
i (w, z)) is the bottom row of a T, T -

matrix, while the identities of type (iv) and (v) express that the rele-
vant T, T -matrices satisfy side conditions sufficient to guarantee that
(ri(w, z), si(w, z)) is a generator of τn+1. These identities hold in V,
since they become equalities if we substitute the free generators w and
z of F for the variables x and y.

Induction on n may be used to prove that Σ(u, v) is a finite set
of identities for every (u, v) ∈ τn+1 − τn, and that if u ∈ B then all
terms appearing in the identities in Σ(u, v) are idempotent. Moreover,
induction on n also shows that if (u, v) ∈ τ , then for any pair (a, b)
from any tolerance S on an algebra A ∈ V the pair (u(a, b), v(a, b))
belongs to the strong commutator [S, S]S.

We have assumed that no algebra in V has a nontrivial strongly
abelian tolerance, so by Lemma 3.5 we have (w, z) ∈ [T, T ]S =

⋃
n<ω τn,

or (w, z) ∈ τn+1 − τn for some n. Therefore V satisfies the finite
set of idempotent identities in Σ(w, z). These identities constitute an
idempotent Maltsev condition which, when satisfied by a variety W,
forces the following property: for any pair (c, d) from any tolerance
R on an algebra B ∈ W the pair (w(c, d), z(c, d)) = (c, d) belongs to
the strong commutator [R,R]S. Using the monotonicity of the strong
commutator (Theorem 3.4 (1)), this is equivalent to the property that
(c, d) ∈ [TgB(c, d),TgB(c, d)]S. Using Lemma 3.5 again we derive that
if this Maltsev condition holds in W, then no algebra in W has a non-
trivial strongly abelian tolerance. Since every tolerance on every mem-
ber of the variety of sets is strongly abelian, this idempotent Maltsev
condition fails in the variety of sets, hence is nontrivial. �
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Theorem 3.12. Let V be a variety. The following are equivalent.

(1) V has no member with a nonzero strongly abelian congruence.
(2) V has no member with a nonzero strongly abelian tolerance.
(3) V satisfies a nontrivial idempotent Maltsev condition.

Proof. We proved in Lemma 3.9 that items (1) and (2) are equiv-
alent, and in Lemma 3.11 that (2)=⇒(3). It remains to prove that
(3)=⇒(1).

Assume that (3) holds, and let f(x1, . . . , xn) be a Taylor term for V.
Arbitrarily choose and fix an algebra A ∈ V, a strongly abelian congru-
ence α ∈ Con(A), and a pair (a, b) ∈ α. Let fi(x,y) be an n-ary term
obtained from f by reordering the variables so that xi is first. (That is,
f(x1, . . . , xn) = fi(xi,y) where y is an ordering of {x1, . . . , xn} \ {xi}.)
The i-th Taylor identity implies that fi(a,u) = fi(b,v) for some (n−1)-
tuples u and v consisting of a’s and b’s. Therefore

[
p q
r s

]
=

[
fi(a,v) fi(b,v)
fi(a,u) fi(b,u)

]
∈M(α, α)

is an α, α-matrix with q = r. Since α is strongly abelian it is strongly
rectangular, so fi(a,u) = r = s = fi(b,u). Now choose w ∈ {a, b}n−1

arbitrarily. The matrix
[
P Q
R S

]
=

[
fi(a,u) fi(b,u)
fi(a,w) fi(b,w)

]
∈M(α, α)

is an α, α-matrix with P = Q. Since α is strongly abelian it is abelian,
so fi(a,w) = R = S = fi(b,w).

What this says about the original Taylor term is that, for any 1 ≤
i ≤ n, if c,d ∈ {a, b}n are tuples that agree in every coordinate except
possibly the i-th, then f(c) = f(d). This statement is true for all i, so

a = f(a, a, a, . . . , a)
= f(b, a, a, . . . , a)
= f(b, b, a, . . . , a)

...
= f(b, b, b, . . . , b) = b,

forcing a = b. Since (a, b) was chosen arbitrarily, we conclude that no
A ∈ V has a nontrivial strongly abelian congruence. �

3.2. Join Terms

In the previous section we showed that a variety omits strongly
abelian congruences or tolerances if and only if it satisfies a nontrivial
idempotent Maltsev condition (Theorem 3.12). In this section we will
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prove the the varieties with these properties are exactly the varieties
that omit strongly rectangular congruences or tolerances. The obvious
approach to this result is to note that if a variety omits strongly rect-
angular congruences or tolerances, then it must omit strongly abelian
congruences or tolerances, and therefore must satisfy a nontrivial idem-
potent Maltsev condition. Thus, the only thing to show is that it is
possible to modify the proof of Theorem 3.12 (3)=⇒(1) so that it only
uses the assumption of strong rectangulation.

It must be possible to obtain the result in this way, but in this sec-
tion we choose another path. We instead develop machinery for dealing
with stongly rectangular congruences and tolerances that makes the
proof of the desired result a triviality. Although the path we choose
does not lead to the result more quickly or more simply than the path
sketched in the previous paragraph, we feel that developing the ma-
chinery for strong rectangulation is more important than the target
result.

Definition 3.13. Let A be an algebra, let T be a tolerance on A
and let δ be a congruence on A. A (T, T )-triple is a triple (b, c; d)
such that there is a matrix[

a b
c d

]
∈M(T, T ) .

A (T, T ; δ)-pair is a pair (c, d) ∈ A2 such that there is a (T, T )-triple
(b, c; d) with b ≡δ c.

Observe that the set of all (T, T )-triples is a subuniverse of A3, and
the set of all (T, T ; δ)-pairs is a subuniverse of A2.

Definition 3.14. Let T be a tolerance on an algebra A. For any
block B of T write a ≥B b (or b ≤B a) to mean that there are (T, T ; 0)-
pairs (u1, u2), . . . , (un−1, un) such that a = u1, b = un, and ui ∈ B for
all i. Write a ∼B b to mean a ≥B b and a ≤B b.

Write a ≥T b (or b ≤T a) if there is some T -block B for which
a ≥B b. Similarly, write a ∼T b if ∃B(a ∼B b).

There is a potential ambiguity in the notation ≥B, because a subset
B may be a block of more than one tolerance, but this issue will not
arise in this monograph.

Lemma 3.15. Let T be a tolerance on an algebra A. The following
hold.

(1) If B is a block of T , then ≥B is a quasiorder on B, and ∼B
is the induced equivalence relation on B. Both relations are
compatible with the idempotent polynomials of A.
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(2) The relation ≥T is a reflexive compatible relation of A, and
∼T is a tolerance on A.

(3) If SR(T, T ; 0) holds, then ≥T is the equality relation on A.
(4) If B is a block of T and is also a block of CgA(T ), then ≥B

equals the restriction to B of ≥T and also equals the restriction
to B of the transitive closure of the set of (T, T ; 0)-pairs.

(5) If T is a congruence, then ≥T is a quasiorder of A, which is
the transitive closure of the set of (T, T ; 0)-pairs. The rela-
tion ∼T is the equivalence relation induced by ≥T , which is a
congruence on A contained in T .

Proof. For this proof, let S denote the set of (T, T ; 0)-pairs of A.

For item (1), the matrix

[
u u
u u

]
belongs toM(T, T ) for any u ∈ A,

so the trivial pair (u, u) is a (T, T ; 0)-pair for any u ∈ A. This is enough
to show that ≥B is reflexive on B. It is clear from Definition 3.14
that ≥B equals tr.cl.(S|B), hence ≥B is transitive as well. This proves
that ≥B is a quasiorder on B; it follows from Definition 3.14 that
∼B is the induced equivalence relation. If p(x1, . . . , xn) is an idem-
potent polynomial of A, then p(B, . . . , B) is a subset of A containing
B and consisting of pairwise T -related elements. Since B is a block,
p(B, . . . , B) = B. Since S is compatible with all polynomials of A,
the fact that p(B, . . . , B) = B implies that S|B is compatible with p.
Therefore ≥B= tr.cl.(S|B) is also compatible with p, as is the intersec-
tion ∼B of this relation with its converse.

Now we prove item (2). Since ≥T equals the union over all blocks
B of the relations ≥B, it follows that ≥T is reflexive. Similarly, ∼T is
reflexive and symmetric. It is only necessary to prove that ≥T and ∼T
are compatible relations. We will prove the following slightly stronger
fact.

Claim 3.16. Let f(x1, . . . , xn) be an n-ary basic operation of A.
Assume that B1, . . . , Bn, B are T -blocks such that f(B1, . . . , Bn) ⊆ B.
If ai ≥Bi bi holds for all i, then

f(a1, . . . , an) ≥B f(b1, . . . , bn).

The same statement is true with ∼ in place of ≥.

The arguments are essentially the same for ≥ and ∼, so we prove
the claim only for ≥. By assumption ai ≥Bi bi, so there are (T, T ; 0)-
pairs (u1

i , u
2
i ), . . . , (u

n−1
i , uni ) such that ai = u1

i , bi = uni , and all uji lie
in Bi. There is no a priori reason to expect that the number of such
pairs is the same for all i, but this can be arranged to be so by adding
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trivial pairs of the form (u, u) to the end of any sequence of pairs that
is shorter than the longest sequence. For each i, the pairs (uji , u

j+1
i )

define a chain of n elements in Bi connecting ai to bi. We write these
chains as rows of an array, and apply f to the columns of the array.

(3.5)

a1 = u1
1 u2

1 u3
1 · · · un1 = b1

a2 = u1
2 u2

2 u3
2 · · · un2 = b2

...
am = u1

m u2
m u3

m · · · unm = bm
f(a) = f(u1) f(u2) f(u3) · · · f(un) = f(b)

Each pair (f(uj), f(uj+1)) is a (T, T ; 0)-pair, since the set S of (T, T ; 0)-
pairs is a subalgebra of A2. The block B contains f(uj) for all j, so
the bottom row of (3.5) is a sequence that witnesses the fact that
f(a) ≥B f(b).

The compatibility of ≥T follows immediately from this claim. For
example, if ai ≥T bi for i = 1, . . . , n, then there exist T -blocks Bi such
that ai ≥Bi bi for all i. If f is an n-ary basic operation of A, then the
set f(B1, . . . , Bn) consists of T -related elements, hence can be extended
to a block B. The claim now applies to prove that f(a) ≥B f(b), hence
that f(a) ≥T f(b).

Item (3) follows from the fact that SR(T, T ; 0) holds iff all (T, T ; 0)-
pairs are trivial.

For item (4), for any T -block B the transitive closure of S|B equals
≥B, which is contained in ≥T , which is contained in the transitive
closure of S. If we restrict these relations to B we get

(3.6) tr.cl.(S|B) = (≥B) ⊆ (≥T )|B ⊆ (tr.cl.(S))|B.
But since B is also assumed to be a block of CgA(T ) in item (4), we
get that tr.cl.(S|B) = (tr.cl.(S))|B, so all of the relations in (3.6) are
equal.

For item (5), the fact that T is an equivalence relation containing
≥T , together with the fact proved in item (4) that ≥T is transitive on
any block of T = CgA(T ), implies that ≥T is transitive on A. Since T
contains the set S of all (T, T ; 0)-pairs and the relation ≥T agrees with
tr.cl.(S) on each block of T , it follows that ≥T agrees with tr.cl.(S)
on A. Since each element of A is contained in a unique block of the
congruence T , it follows that ∼T agrees with ∼B on any block of T .
Thus a ∼B b holds if and only if a ≥T b and a ≤T b, which implies that
∼T is the equivalence relation induced by ≥T . It is a congruence by
item (2), and is contained in T because all (T, T ; 0)-pairs are contained
in T . �
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Lemma 3.17. Let T be a tolerance on an algebra A. The following
hold.

(1) If (b, c) ∈ T , then (b, c; b) and (b, c; c) are (T, T )-triples.
(2) Let p be a k-ary polynomial, and suppose that (bi, ci; di) are

(T, T )-triples for 1 ≤ i ≤ k. If p(b1, . . . , bn) = p(c1, . . . , cn),
then (p(c1, . . . , cn), p(d1, . . . , dn)) is a (T, T ; 0)-pair.

(3) Let f be a binary idempotent polynomial of A, and assume
[
a b
c d

]
∈M(T, T ) .

If B is a block of T containing a, b, c and d, then

f(b, c) ≥B f(f(b, d), f(a, c)) .

(4) Let q be an n-ary idempotent polynomial of A. If B is a block
of T containing elements a1, . . . , an−1, b1, . . . , bn−1 and c, then

q(a, q(b, c)) ≥B q(a, q(a, c)) .
(5) Let F be an n-ary idempotent polynomial of A. Let B be a

block of T containing elements uij (1 ≤ i, j ≤ n) and w, and
let ui = (ui1, . . . , uin). If uii ≥B w for 1 ≤ i ≤ n, then

F (F (u1), F (u2), . . . , F (un)) ≥B w .
Proof. Item (1) follows from the fact that

[
c b
c b

]
and

[
b b
c c

]

are (T, T )-matrices if (b, c) ∈ T .
To prove (2) suppose that (bi, ci; di) are (T, T )-triples for 1 ≤ i ≤ k.

They come from some (T, T )-matrices
[
ai bi
ci di

]
.

Apply p to these matrices componentwise. The resulting matrix is a
T, T -matrix whose off-diagonal entries are p(b1, . . . , bn) and p(c1, . . . , cn).
If these are equal, as is assumed in (2), then (p(c1, . . . , cn), p(d1, . . . , dn))
is a (T, T ; 0)-pair by definition.

To prove (3), we will apply item (2) to the polynomial

p(x1, x2, x3, x4) = f(f(x1, x2), f(x3, x4)).

The (T, T )-triples that we will use are (b, b; b), (b, c; d), (c, b; a) and
(c, c; c). The first and last of these triples are (T, T )-triples by item (1),
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the second is a (T, T )-triple since we have assumed that
[
a b
c d

]
∈M(T, T ),

and the third is a (T, T )-triple since we can interchange the rows and
columns of this matrix to obtain that[

d c
b a

]
∈M(T, T ).

Item (2) guarantees that since

p(b, b, c, c) = f(f(b, b), f(c, c)) = f(f(b, c), f(b, c)) = p(b, c, b, c)

we have that (p(b, c, b, c), p(b, d, a, c)) is a (T, T ; 0)-pair. But B is
closed under f , since f is idempotent and B is a tolerance block, and
(f(b, c), f(f(b, d), f(a, c))) = (p(b, c, b, c), p(b, d, a, c)), so

f(b, c) ≥B f(f(b, d), f(a, c)),

as claimed.
For item (4), let t = q(a, q(b, c)) and write t for the (n − 1)-tuple

(t, t, . . . , t). Since q is idempotent and all ai, bj and c belong to B, we
get that both t and q(b, c) belong to B. Now apply item (2) using
p(x,y, z) = q(x, q(y, z)) and the 2n − 1 (T, T )-triples (a1, t; a1), . . . ,
(an−1, t; an−1), (b1, a1; a1), . . . , (bn−1, an−1; an−1), (c, q(b, c); c) (which
are (T, T )-triples, by item (1)). Item (2) guarantees that since

p(a,b, c) = q(a, q(b, c))
= t
= q(t, t)
= q(t, q(a, q(b, c)))
= p(t, a, q(b, c)))

the pair (q(a, q(b, c)), q(a, q(a, c))) = (p(t, a, q(b, c))), p(a, a, c)) is a
(T, T ; 0)-pair. Since these elements belong to B we have

q(a, q(b, c)) ≥B q(a, q(a, c)).
This proves (4).

Finally we prove (5). We show that

F (F (u1), . . . , F (ui), w, w, . . . , w) ≥B w
by induction on i. This statement follows from the idempotence of F
when i = 0, and for i = n yields the desired statement. All elements
that we shall consider will be in B, because F is idempotent and B is
a T -block.
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As an inductive assumption suppose that

F (F (u1), . . . , F (ui−1), w, w, . . . , w) ≥B w
holds. Now apply (4) in the i-th variable. By this we mean cyclically
permute the last n− i+1 variables of F to obtain an n-ary idempotent
polynomial q whose last variable corresponds to the i-th variable of F :

q(x1, . . . , xn) := F (x1, . . . , xi−1, xn, xi, . . . , xn−1),

then apply (4) to q. Choose (n− 1)-tuples

a = (F (u1), . . . , F (ui−1), w, . . . , w),
b = (ui1, . . . , ui(i−1), ui(i+1), . . . , uin) ,

and choose c = uii. With these choices q(b, c) = F (ui). The conclusion
of (4) informs us that

q(a, q(b, c)) = F (F (u1), . . . , F (ui−1), F (ui), w, . . . , w)

is ≥B q(a, q(a, c)), which equals

F (F (u1), . . . , F (ui−1), F (F (u1), . . . , F (ui−1), uii, w, . . . , w), w, . . . , w).

Using the assumption that uii ≥B w, we find that this element is ≥B-
related to the element

F (F (u1), . . . , F (ui−1), F (F (u1), . . . , F (ui−1), w, w, . . . , w), w, . . . , w).

Using the inductive assumption twice we find that this element,

F (F (u1), . . . , F (ui−1), F (F (u1), . . . , F (ui−1), w, w, . . . , w), w, . . . , w),

is ≥B-related to

F (F (u1), . . . , F (ui−1), w, w, . . . , w) ≥B w.
By the transitivity of ≥B on B we get that

F (F (u1), . . . , F (ui−1), F (ui), w, . . . , w) ≥B w,
which completes the proof of (5). �

Definition 3.18. A join term for a variety V is an idempotent
binary term s(x, y) such that for every A ∈ V, tolerance T of A, and
pair (u, v) ∈ T it is the case that s(u, v) ≥T u and s(u, v) ≥T v.

In order to investigate this concept we need to understand the re-
lation ≥T in the generic setting.

Lemma 3.19. Let V be a variety, let F = FV(x, y) be the free
V-algebra generated by {x, y}, let T be the tolerance of F generated
by (x, y), let θ = CgF(x, y), and let B = x/θ. If u, v ∈ B, then u ≥T v
if and only if there exists an m ≥ 1, and sixary terms f1, . . . , fm such
that V satisfies the following identities:
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(i) u(x, y) ≈ f1(y, y, x, x, x, y),
(ii) fm(y, x, x, x, y, y) ≈ v(x, y),
(iii) fi(x, x, x, y, y, y) ≈ fi(y, y, x, x, x, y), 1 ≤ i ≤ m
(iv) fi(y, x, x, x, y, y) ≈ fi+1(y, y, x, x, x, y), 1 ≤ i ≤ m− 1.

Proof. By Theorem 3.6 (4), B is a block of the congruence θ.
By Lemma 3.15 (4), the restriction of ≥T to B equals the restriction
of the transitive closure of the set of (T, T ; 0)-pairs to B. It follows
from Lemma 3.10 that the (T, T ; 0)-pairs are exactly the pairs of the
form (f(y, y, x, x, x, y), f(y, x, x, x, y, y)) for which V satisfies the iden-
tity f(x, x, x, y, y, y) ≈ f(y, y, x, x, x, y). Therefore, the identities
enumerated in the statement of this lemma express exactly that (u, v)
is in the transitive closure of the set of (T, T ; 0)-pairs. �

Theorem 3.20. The following are equivalent for a variety V.

(1) V satisfies a nontrivial idempotent Maltsev condition.
(2) V has a join term.
(3) V satisfies the following Maltsev condition: there exist m ≥ 1,

n ≥ 1, idempotent sixary terms f1, . . . , fm, g1, . . . , gn, and a
binary term s such that the following identities hold in V:
(i) s(x, y) ≈ f1(y, y, x, x, x, y),

(ii) fm(y, x, x, x, y, y) ≈ x,
(iii) fi(x, x, x, y, y, y) ≈ fi(y, y, x, x, x, y), 1 ≤ i ≤ m
(iv) fi(y, x, x, x, y, y) ≈ fi+1(x, x, x, y, y, y), 1 ≤ i ≤ m− 1.
(v) s(x, y) ≈ g1(y, y, x, x, x, y),

(vi) gm(y, x, x, x, y, y) ≈ y,
(vii) gi(x, x, x, y, y, y) ≈ gi(y, y, x, x, x, y), 1 ≤ i ≤ n

(viii) gi(y, x, x, x, y, y) ≈ gi+1(x, x, x, y, y, y), 1 ≤ i ≤ n− 1.

Proof. To prove (1) =⇒(2) assume that a variety V has a Taylor
term f . The Taylor identities may be written in the form

f(xi1, . . . , xin) ≈ f(yi1, . . . , yin) ,

where 1 ≤ i ≤ n, xij, yij ∈ {x, y}, and xii = x while yii = y. Consider
the binary term

s(x, y) = f(f(x11, . . . , x1n), . . . , f(xn1, . . . , xnn)) .

The term s is idempotent, since f is. Applying Lemma 3.17 (5) to
F = f , B a block of some tolerance T on some A ∈ V, and elements
u, v ∈ B, shows that s(u, v) ≥B u. On the other hand, the Taylor
identities show that the identity

s(x, y) ≈ f(f(y11, . . . , y1n), . . . , f(yn1, . . . , ynn))
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holds in V, and so Lemma 3.17 (5) shows that s(u, v) ≥B v holds as
well. Thus, s is a join term in V, and (2) is proved.

Now suppose that a variety V has a join term s. Then we have
s(x, y) ≥T x and s(x, y) ≥T y in the free algebra F = FV(x, y) for the
tolerance T generated by (x, y). It follows from Lemma 3.19 that V
satisfies the idempotent Maltsev condition defined in (3). This proves
that (2) =⇒(3). This Maltsev condition expresses the fact that s is a
join term in V. The variety of sets does not have a join term, since
the relation ≥T is the equality relation in sets. Therefore this Maltsev
condition is nontrivial, and (3) =⇒(1). �

According to Definitions 3.14 and 3.18, s(x, y) is a join term for V
if it is idempotent and for every A ∈ V, tolerance T on A, and pair
(u, v) ∈ T , there exist blocks B1 and B2 such that s(u, v) ≥B1 u and
s(u, v) ≥B2 v. It is a consequence of the previous theorem that the
blocks B1 and B2 may be chosen to be equal, as we now explain.

Corollary 3.21. Let V be a variety with a join term s(x, y). If
A ∈ V, T is a tolerance on A, and B is any T -block containing u and
v, then s(u, v) ≥B u and s(u, v) ≥B v.

Proof. Since B is a T -block, it is closed under all idempotent
term operations of A, in particular it is closed under s and all the fi
and gi from Theorem 3.20 (3). If we substitute u for x and v for y in
these term operations we obtain a sequence of elements of B which,
according to the equations of that theorem, witness that s(u, v) ≥B u
and s(u, v) ≥B v. �

Theorem 3.22. Let V be a variety. The following are equivalent.

(1) V has no member with a nonzero strongly rectangular congru-
ence.

(2) V has no member with a nonzero strongly rectangular toler-
ance.

(3) V satisfies a nontrivial idempotent Maltsev condition.

Proof. As noted at the beginning of this section, the only part of
this theorem that remains to be proved is (3)=⇒(1).

Assume that (3) holds, and let s be a join term for V. Choose an
algebra A ∈ V, a strongly rectangular congruence α on A, and a pair
(a, b) ∈ α. Since s is a join term we have s(a, b) ≥α a and s(a, b) ≥α b.
By Lemma 3.15 (3) the relation ≥α is the equality relation when α is
strongly rectangular, so a = b. Hence α = 0 and (1) holds. �
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3.3. Abelian Tolerances and Congruences

In the earlier part of this chapter we saw that a variety has a Taylor
term if and only if its members have no strongly abelian tolerances or
congruences. Taylor terms do not conflict with the existence of nontriv-
ial (ordinary) abelian tolerances and congruences, but do improve their
behavior. In this section we will see that if a variety has a Taylor term,
then abelian tolerances generate abelian congruences, and also that a
congruence interval perspective with an abelian congruence interval is
itself abelian.

Theorem 3.23. Assume that V satisfies a nontrivial idempotent
Maltsev condition. If A ∈ V has a tolerance T and a congruence δ
such that C(T, T ; δ) holds, then C(CgA(T ),CgA(T ); δ) holds.

Proof. It suffices to prove this theorem in the case when δ = 0,
for if C(T, T ; δ) holds, then C(T/δ, T/δ; 0) holds in A/δ, according
to Theorem 2.19 (10). If the theorem is true when δ = 0, then

we get that C(α, α; 0) holds for α := CgA/δ(T/δ). But then α =
CgA/δ(CgA(T )/δ), too, so again using Theorem 2.19 (10) we get that
C(CgA(T ),CgA(T ); δ) holds, which is the statement of the theorem.
We therefore assume that T is an abelian tolerance, and make it our
task to prove that T generates an abelian congruence.

Write T for the subalgebra of A2 whose universe is A2[T ], which is
just the set T (cf. the first paragraph of Chapter 2), and write ∆ for
the congruence on T generated by the set

{〈(a, a), (b, b)〉 | (a, b) ∈ T}.
Define tolerances on T by R1 := {〈(a, b), (a, c)〉 ∈ T 2 | (b, c) ∈ T} and
let R2 := {〈(a, c), (b, c)〉 ∈ T 2 | (a, b) ∈ T}.

Claim 3.24. ∆ ∩Ri is the equality relation for both i = 1 and 2.

It suffices to prove this for i = 1 only, so choose a pair 〈(a, b), (a, c)〉 ∈
∆∩R1. We must prove that b = c. Let f(x1, . . . , xn) be a Taylor term
for V. The i-th Taylor identity has the form

f(x1, . . . , xn) ≈ f(y1, . . . , yn)

where (xj, yj) ∈ {(x, x), (x, y), (y, x), (y, y)} for all j, and (we may as-
sume) (xi, yi) = (x, y). Partition N into blocks {B1, . . . , B5}, some of
which might be empty, as follows: B1 consists of those j ∈ N for which
(xj, yj) = (x, x), B2 consists of those j 6= i for which (xj, yj) = (x, y),
B3 = {i}, B4 consists of those j ∈ N for which (xj, yj) = (y, x), and
B5 consists of those j for which (xj, yj) = (y, y). Now substitute the
variable z1 for the variable xj of f(x1, . . . , xn) if j ∈ B1, z2 if j ∈ B2,
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and so on. This produces a 5-ary term fi(z1, z2, z3, z4, z5). The i-th
Taylor identity is now fi(x, x, x, y, y) = fi(x, y, y, x, y), where the third
argument of fi corresponds to the i-th argument of f . Define unary
polynomials of T by

pi((x, y)) = fT
i ((a, a), (a, b), (x, y), (b, a), (b, b)).

The i-th Taylor identity ensures that pi((a, b)) lies on the diagonal of T.
The property that T is abelian is equivalent to the property that the
diagonal of T is a union of ∆-classes, so, since pi((a, b)) ∆ pi((a, c)),
we get that pi((a, c)) lies on the diagonal of T. Since pi((a, b)) and
pi((a, c)) have the same first coordinate, and both lie on the diagonal,
we get pi((a, b)) = pi((a, c)). Equating second coordinates yields

fi(a, b, b, a, b) = fi(a, b, c, a, b).

Since (a, b), (b, c) ∈ T and T is abelian, we still have equality after
changing the underlined a’s to b’s:

fi(b, b, b, b, b) = fi(b, b, c, b, b).

For the original Taylor term this means that

b = f(b, b, . . . , b) = f(b, . . . , b, c, b, . . . , b)

where only one c occurs, and it occurs on the righthand side in the i-th
position. We argue by induction that, for all i, b = f(c, c, . . . , c, b, . . . , b),
where c occurs in the first i positions and b occurs elsewhere. For i = 1
this follows from the last displayed line. For later values of i we apply
the T, T -term condition to change b to c in the following underlined
positions:

f(b, b, . . . , b, b, b, . . . , b) = f(b, b, . . . , b, c, b, . . . , b).

We obtain

f(c, c, . . . , c, b, b, . . . , b) = f(c, c, . . . , c, c, b, . . . , b),

which shows that the desired result with c in the first i − 1 positions
implies the result for c in the first i positions.

Continuing to the end, we finally have b = f(c, c, . . . , c) = c by the
idempotence of f . This proves the claim.

Claim 3.25. ∆ is abelian.

From Claim 3.24 and Theorem 2.19 (8) we get that C(Ri,∆; 0)
holds for i = 1 and 2. This and Theorem 2.19 (2) and (5) imply that
C(CgT(R1∪R2),∆; 0) holds. If (a, b) ∈ T , then (a, a) R1 (a, b) R2 (b, b),
so 〈(a, a), (b, b)〉 ∈ CgT(R1 ∪R2). This shows that each generator of ∆
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belongs to CgT(R1 ∪R2), so CgT(R1 ∪R2) ≥ ∆. From the monotonic-
ity of the centralizer in its first two variables we get that C(∆,∆; 0)
holds in T. This proves the claim.

Let D be the image of the diagonal embedding i : A → T : a 7→
(a, a). Since ∆ is an abelian congruence of T, it follows from The-
orem 2.19 (9) that that ∆|D is an abelian congruence of D. Since
i : A → D is an isomorphism, the congruence i−1(∆|D) is an abelian
congruence of A. Since i(T ) is the generating set for ∆, it follows that
T ⊆ i−1(∆|D), and therefore T is contained in the abelian congruence
i−1(∆|D). Hence CgA(T ) is abelian. �

Theorem 3.26. Assume that V satisfies a nontrivial idempotent
Maltsev condition and that A ∈ V. If α, β ∈ Con(A), then

C(α, α;α ∧ β) ⇐⇒ C(α ∨ β, α ∨ β; β).

Proof. If C(α∨β, α∨β; β) holds, then C(α, α; β) holds, by mono-
tonicity. From this and C(α, α;α) we get that C(α, α;α∧β) holds, by
Theorem 2.19 (4).

Now assume that C(α, α;α ∧ β) holds. Using Theorem 2.19 (4)
again we derive that C(α, α; β) holds. By Theorem 2.19 (8), C(β, α; β)
holds, so we get that C(α∨β, α; β) and then C(α∨β, β ◦α◦β; β) hold
by parts (5) and (3) of Theorem 2.19. This and the monotonicity
of the centralizer yield that C(T, T ; β) holds for T = β ◦ α ◦ β. Since
CgA(T ) = α∨β we get C(α∨β, α∨β; β) holds from Theorem 3.23. �

Remark 3.27. It is not possible to strengthen the implication in
Theorem 3.23 to

(3.7) C(S, T ; δ) =⇒C(CgA(S),CgA(T ); δ)

assuming only that V has a Taylor term. If implication (3.7) holds for
V, then arguing as in the proof of Theorem 3.26 we would have

C(α, β; δ) =⇒C(α ∨ δ, β ∨ δ; δ)
for any α, β, δ ∈ Con(A), A ∈ V. In particular, since C(α, β; δ) holds
whenever α, β and δ generate a sublattice isomorphic to N5, labeled
as in Figure 3.1, we would also have C(α ∨ δ, β ∨ δ; δ), and therefore
C(α, α; δ) by the monotonicity of the commutator. Altogether this
shows that if V has a Taylor term and satisfies implication (3.7), then
the critical quotient of any N5 in a congruence lattice of a member
of V is abelian. Thus, for example, the variety of semilattices has the
Taylor term f(x, y) = x ∧ y, but cannot satisfy implication (3.7) since
some semilattices have sublattices isomorphic to N5 in their congruence
lattices but no semilattice has an abelian congruence interval.
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CHAPTER 4

Meet Continuous Congruence Identities

The class of all congruence lattices of algebras in a variety V is
usually too complicated to describe is any nontrivial way. There is
more hope for a description of the class L(V) of lattices embeddable
in congruence lattices of algebras in V. It is evident that L(V) is closed
under the formation of isomorphic lattices and sublattices. Moreover,
the map

(4.1)
∏

i∈I
Con(Ai)→ Con

(∏

i∈I
Ai

)
: (θi)i∈I 7→ Θ,

where a Θ b if ai θi bi for all i and aj = bj for all but finitely many j, is
an embedding, so L(V) is closed under the formation of products. This
makes L(V) a prevariety, which we call the congruence prevariety
of V.

Any prevariety is axiomatizable by a class of formulas of the form

(4.2)
∧

i∈I
εi(x)→ ε(x)

where ε(x) and each εi(x) is an identity and x and I may be infinite (cf.
Theorem 9.2.2 of [35]). Therefore, in studying the shapes of congruence
lattices in varieties, it is natural to start by considering the satisfaction
of sentences of this form. The most obvious problems are still unsolved.

Problem 4.1. Which congruence prevarieties are first-order ax-
iomatizable?

In other words, for which varieties V is it true that L(V) can be
axiomatized by sentences like (4.2) where x and I are finite? equiva-
lently, when is L(V) a quasivariety? It is known that if V is congru-
ence n-permutable for some n, then L(V) is first-order axiomatizable,
[5, 32, 33]. It is also known that if V has a Taylor term but does not
satisfy a nontrivial congruence identity, then L(V) is not first-order
axiomatizable, [51]. The full answer to Problem 4.1 is not yet known.
We do not even know the answer to the following special case.

Problem 4.2. If the congruence prevariety of a congruence mod-
ular variety first-order axiomatizable?
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The congruence prevariety is first-order axiomatizable if and only
if it is a quasivariety. So, it is a natural problem to consider the satis-
faction of congruence quasi-identities.

Problem 4.3. Is the class of varieties satisfying a given set of
congruence quasi-identities definable by (idempotent, linear) Maltsev
conditions?

Problem 4.3 is known to have a positive answer when posed for
identities in place of quasi-identities. A. Pixley [73] and R. Wille [78]
each described an algorithm to produce a family of idempotent linear
Maltsev conditions defining the class of varieties satisfying a given con-
gruence identity. By suitably modifying the Pixley–Wille algorithm,
partial results have been obtained for special types of quasi-identities
(cf. [3, 4, 5, 6, 40]). The strongest of these is the result we have
recorded as Theorem 2.22, which states that Problem 4.3 has an affir-
mative answer for quasi-identities satisfying (W). The most that one
could hope for is that if U and V satisfy the same idempotent Maltsev
conditions then they have the same congruence prevariety. The most
attractive special case of this is the case where U = SET , since it fol-
lows from Whitman’s Theorem (that every lattice is embeddable into
a lattice of equivalence relations, cf. Section VII.8 of [1]) that L(SET )
is the class L of all lattices.

Problem 4.4. Suppose that V satisfies no nontrivial idempotent
Maltsev condition. Is it true that L(V) = L? Is it true at least that
L(V) contains the lattice Π4 of all equivalence relations on a 4-element
set?

We expect a negative answer to both questions asked in Problem 4.4,
but see Theorem 4.18 for a positive partial result.

The purpose of this chapter is to explain how the presence or ab-
sence of a Taylor term affects the shapes of congruence lattices in a
variety. The Pixley–Wille algorithm shows that any variety that satis-
fies a nontrivial congruence identity in the language of lattices satisfies
a nontrivial idempotent linear Maltsev condition and therefore has a
Taylor term. The converse is not true; congruence identities are not
flexible enough to say anything nontrivial about varieties satisfying
very weak idempotent Maltsev conditions. In order to make nontrivial
statements about the shapes of congruence lattices in arbitrary varieties
with a Taylor term, we need to consider sentences other than lattice
identities. In this chapter we will describe congruence lattice shapes
in three different ways: by using quasi-identities in the language of
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ordinary lattices, by using identities in the language of meet continu-
ous lattices, and by identifying omitted sublattices. We will exhibit a
nontrivial quasi-identity σ in the language of lattice theory such that
V has a Taylor term if and only if L(V) |= σ (Theorem 4.12 (2)). We
will prove that there is a nontrivial identity τ in the language of meet
continuous lattice theory such that V has a Taylor term if and only if
L(V) |= τ (Theorem 4.12 (4)). Finally, we will exhibit a finite lattice L
such that V has a Taylor term if and only if L /∈ L(V) (Theorem 4.23).

4.1. Maltsev Conditions From Congruence Identities

If V is a variety, let LMC(V) be the class of all meet continuous lat-
tices for which there is a meet continuous embedding of L into Con(A)
for some A ∈ V. LMC(V) is the meet continuous analogue of the con-
gruence prevariety of V. It is also a prevariety, since the mapping
described in (4.1) preserves complete joins. It seems appropriate to
us to identify the study of shapes of congruence lattices in varieties
with the study of LMC(V). In this short monograph we only begin to
scratch the surface. In this chapter we will show that a variety has a
Taylor term if and only if LMC(V) satisfies a nontrivial meet continuous
identity.

In this section we will show that the Pixley–Wille algorithm can
be extended to meet continuous identities, which will show that the
class of varieties satisfying a given meet continuous congruence iden-
tity is definable by idempotent linear Maltsev conditions. The proof
is straightforward, but is included because there is a compactness con-
dition associated to Maltsev conditions that we establish by proving
the somewhat nonobvious fact that any meet continuous identity is
equivalent to a set of identities involving only finitely many variables
apiece.

Using the same arguments as those used for ordinary lattice identi-
ties (cf. the second paragraph of Section 2.2), it can be shown that any
family of meet continuous lattice identities is equivalent to a family
of inclusions of the form P ≤ Q where P and Q are meet contin-
uous lattice words. Modulo the identities defining meet continuous
lattices, we may identify P and Q with elements from some free meet
continuous lattice, hence with ideals from some free lattice. Now, an
inclusion P ≤ Q between ideals is equivalent to a family of inclusions
(p] ≤ Q, p ∈ P , where the included ideal is principal, therefore any
family of meet continuous lattice identities is equivalent to a family
of inclusions of the form p ≤ Q where p and Q are meet continuous
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lattice words with no infinitary join occuring in p. We refine this in
the following lemma.

Lemma 4.5. Any family of meet continuous lattice identities is
equivalent, modulo the identities defining the variety of meet contin-
uous lattices, to a family of inclusions of the form p ≤ Q where both
p and Q are meet continuous lattice words in finitely many variables,
and no infinitary join occurs in p.

Proof. We work modulo the identities defining the class of meet
continuous lattices, so we may assume that p and Q are elements in the
free meet continous lattice F generated by some set {x1, x2, x3, . . .}. A
meet continuous lattice L satisfies the inclusion p ≤ Q if for every meet
continuous homomorphism ϕ : F→ L it is the case that ϕ(p) ≤ ϕ(Q).
Assume that this holds for L. Since p has no infinitary joins, we may
assume that the variables that appear in p are among {x1, . . . , xn}. Let
ε be the meet continuous endomorphism of F defined on the generators
by xi 7→ xi if 1 ≤ i ≤ n and xi 7→ 0 otherwise. Then ϕ ◦ ε : F→ L is a
meet continuous homomorphism, so

ϕ ◦ ε(p) ≤ ϕ ◦ ε(Q)

by the assumption on L. But ε is a retraction of F onto its meet
continuous sublattice generated by {x1, . . . , xn}, and this sublattice
contains p, so ε(p) = p. Thus ϕ(p) ≤ ϕ(Q′) where Q′ := 〈ε(Q)〉. Since
ϕ was arbitrary, this shows that if p ≤ Q holds in L then p ≤ Q′

holds in L. The converse is obvious: ε is decreasing on generators, so
Q′ = ε(Q) ≤ Q in F, and so p ≤ Q′ implies p ≤ Q. Therefore, a
meet continuous lattice satisfies p ≤ Q if and only if it satisfies p ≤ Q′.
The inclusion p ≤ Q′ involves elements of the (free) sublattice of F
generated by {x1, . . . , xn}, so our original inclusion p ≤ Q is equivalent
to one in a finite set of variables. �

Lemma 4.5 implies that there are at most 22ℵ0 varieties of meet
continuous lattices, since there are at most 2ℵ0 inequivalent inclusions
of the form p ≤ Q in finitely many variables. We do not know if this
upper bound is attained, but it is not hard to see that there are at least
2ℵ0 varieties of meet continuous lattices (Argument: If V is a variety of
lattices, then the subclass of meet continuous lattices in V generates V
since it contains the ideal lattices of members of V. This subclass is a
variety in the language whose nonlogical symbols are {∨,∧}, since it
is closed under H, S and P. This proves that there are at least as many
meet continuous lattice varieties as there are ordinary lattice varieties,
and it is well known that are 2ℵ0 ordinary lattice varieties.)
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Problem 4.6. Determine the number of meet continuous lattice
varieties.

Theorem 4.7. The class of varieties satisfying a given set of meet
continuous congruence identities is definable by a family of idempotent
linear Maltsev conditions.

Proof. It suffices to prove that the class of varieties whose con-
gruence lattices satisfy a single inclusion p ≤ Q, where p is an ordinary
lattice word and Q is a meet continuous lattice word in the same set
of variables, is definable by a family of idempotent linear Maltsev con-
ditions.

If p = p(x1, . . . , xn) and θ1, . . . , θn are congruences on an algebra,
then

p(θ1, . . . , θn) =
⋃

i∈ω
pi(θ1, . . . , θn)

where pi is the term in the signature {◦,∧} that is obtained from p
by replacing each occurrence of binary join with the i-fold relational
product and keeping each occurrence of ∧. For example, if p = x1∧(x2∨
x3), then p1 = x1∧x2, p2 = x1∧(x2◦x3), p3 = x1∧(x2◦x3◦x2), etc. Now,
the inclusion p(θ1, . . . , θn) =

⋃
pi(θ1, . . . , θn) ≤ Q(θ1, . . . , θn) holds in

some congruence lattice if and only if pi(θ1, . . . , θn) ⊆ Q(θ1, . . . , θn)
holds for every i. We will show that for any single i the inclusion
pi ⊆ Q can be characterized by a single Maltsev condition.

As noted in Corollary 2.10, there is a natural identification of
Q with an ideal in the free lattice generated by {x1, . . . , xn}. This
lattice is countable, so the ideal associated to Q has a cofinal se-
quence q0 ≤ q1 ≤ q2 ≤ · · · of lattice words. Let qkj be the word in

{◦,∧} obtained from qk by replacing each join with j-fold alternat-
ing ◦-composition and keeping each occurrence of ∧. For example, if
qk = (x1 ∧ x2) ∨ (x1 ∧ x3), then qk3 = (x1 ∧ x2) ◦ (x1 ∧ x3) ◦ (x1 ∧ x2).
Let rj = q0

j ◦ q1
j ◦ · · ·◦ qjj . If θ1, . . . , θn are congruences on some algebra,

◦ represents relational product, and ∧ represents intersection of rela-
tions, then qkj (θ1, . . . , θn) ⊆ rj(θ1, . . . , θn) ⊆ qj(θ1, . . . , θn) for all k ≤ j,
so

Q(θ1, . . . , θn) =
⋃

j∈ω
rj(θ1, . . . , θn).

We will argue that (a) any variety satisfying the congruence inclusion
pi ⊆ Q =

⋃
rj must satisfy a congruence inclusion of the form pi ⊆ rj

for some j, and that (b) the class of varieties satisfying any particular
inclusion pi ⊆ rj is definable by an idempotent linear strong Maltsev
condition. If this strong Maltsev condition is denoted σj, then σj `
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σj+1 (since rj(θ1, . . . , θn) ⊆ rj+1(θ1, . . . , θn) for any choice of the θ’s).
Therefore, (a) and (b) will show that the class of varieties satisfying
pi ⊆ Q is definable by the Maltsev condition

∨
σj.

Next we concern ourselves with the problem of constructing an
idempotent linear strong Maltsev condition associated to a congruence
inclusion p ⊆ r where p and r are terms in the signature {◦,∧}. The
construction is a straightforward generalization of Maltsev’s construc-
tion of a strong Maltsev condition defining congruence permutability,
which many readers will already know. We will illustrate the construc-
tion by deriving the Maltsev condition associated with the congruence
inclusion

(4.3) θ1 ∧ (θ2 ◦ θ3) ⊆ (θ1 ∧ θ2) ◦ (θ1 ∧ θ3),

which is p ⊆ r for p(x1, x2, x3) = x1 ∧ (x2 ◦ x3) and r(x1, x2, x3) =
(x1 ∧ x2) ◦ (x1 ∧ x3).

We begin by building a directed labeled graph associated to a {◦∧}-
term p. Start with a graph G1(p) having two vertices y1 and y2 con-
nected by an edge (y1, y2) directed from left to right and labeled with p,
as depicted in Figure 4.1. From a partially completed graph Gi(p) the

t t-y1 p y2

Figure 4.1.

construction continues by selecting an edge directed from left to right,
labeled by a term w, and connecting vertices yi and yj. If w = u ∧ v,

t t-yi u ∧ v yj ⇒ t t-
-

yi
u

v

yj

Figure 4.2.

then Gi+1(p) is the graph obtained from Gi(p) by replacing the edge
labeled w with two edges directed from left to right, labeled u and v
respectively, connecting the same vertices in parallel, as in Figure 4.2.
If instead w = u ◦ v, then construct Gi+1(p) by replacing the edge

t t-yi u ◦ v yj ⇒ t t t- -yi u yk v yj

Figure 4.3.

labeled w with two edges directed from left to right, labeled u and
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v, connecting the same vertices in serial through a new vertex, as in
Figure 4.3. If neither of the above steps can be performed, then all
edges are labeled by variables and the construction is complete. The
construction will eventually end since each step alters the complexity
of exactly one edge label, and reduces the complexity of that label
without introducing any more labels of the same or larger complexity.

In our illustrative example the term p equals x1 ∧ (x2 ◦ x3) and the
graphs that arise in the three steps of the construction are depicted in
Figure 4.4.

t t-y1 p

G1(p)

y2 ⇒ t t-
-

y1

x1

x2 ◦ x3

G2(p)

y2 ⇒ t t t- -

-
y1 y3 y2

x1

x2 x3

G3(p)

Figure 4.4. The construction of G(p) for p = x1 ∧ (x2 ◦ x3)

Call the final graph in the construction G(p). We may assume
that the vertices are Y = {y1, . . . , ym} and that the edge labels are the
variables occurring in p, which are among the variables x1, . . . , xn. The
key features of G(p) are stated in Claim 4.8.

Claim 4.8. Let A be an algebra and let αi ∈ Con(A) for 1 ≤ i ≤ n.

(1) If Y → A : ys 7→ as is an assignment such that (ai, aj) ∈ αk
whenever (yi, yj) is an xk-labeled edge of G(p), then (a1, a2) ∈
p(α1, . . . , αn).

(2) Conversely, given any (a1, a2) ∈ p(α1, . . . , αn), there is an as-
signment Y → A : ys → as extending y1 7→ a1, y2 7→ a2 such
that (ai, aj) ∈ αk whenever (yi, yj) is an xk-labeled edge of
G(p).

Choose and fix assignments Y → A : ys 7→ as of vertex labels of
G(p) to elements of A and X → Con(A) : xs 7→ αs of edge labels to
congruences on A. With respect to these choices, consider the follow-
ing property of some G`(p): “For each w-labeled edge (yi, yj) the pair
(ai, aj) is in w(α) := w(α1, . . . , αn).” Item (1) asserts that if this prop-
erty holds for G(p), then it holds for G1(p). Therefore, it is enough
to show that if the property holds for G`+1(p), then it holds for G`(p).
For a construction step of the ‘parallel type’ (Figure 4.2) this is a con-
sequence of the fact that if (ai, aj) ∈ u(α) and (ai, aj) ∈ v(α), then
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(ai, aj) ∈ u ∧ v(α). For a construction step of the ‘serial type’ (Fig-
ure 4.3) this is a consequence of the fact that if (ai, ak) ∈ u(α) and
(ak, aj) ∈ v(α), then (ai, aj) ∈ u ◦ v(α).

For (2), choose and fix an assignment X → Con(A) : xs 7→ αs.
Consider this property of an assignment Y → A : ys 7→ as of vertex
labels of G`(p) to elements of A: “For each w-labeled edge (yi, yj) the
pair (ai, aj) is in w(α).” Item (2) asserts that any assignment y1 7→ a1,
y2 7→ a2 of G1(p) which satisfies this property can be extended to an
assignment of the vertex labels of G(p) which satisfies this property. It
is enough to prove that if an assignment of the vertex labels of G`(p) has
the property, then this assignment can be extended to an assignment of
the vertex labels of G`+1(p) that has the property. This is trivial for a
construction step of the parallel type (Figure 4.2), since no new vertex
labels are introduced and the assignment ys 7→ as that witnesses the
satisfaction of the property for G`(p) also witnesses it for G`+1(p). For
a construction step of the serial type (Figure 4.3), a new vertex with
label yk is introduced to replace an edge (yi, yj) labeled u◦v with edges
(y1, yk) and (yk, yj) labeled u and v respectively. In this case, extend
the witnessing assignment ys 7→ as for Gi(p) by defining yk 7→ ak where
ak is chosen so that (ai, ak) ∈ u(α) and (ak, aj) ∈ v(α). It is possible
to make such a choice, since u ◦ v(α) = u(α) ◦ v(α), and such a choice
witnesses the desired property.

Now construct a directed graph G(r) for r in exactly the same way,
except use z’s instead of y’s for the vertices. See Figure 4.5 for G(r)
when r equals (x1 ∧ x2) ◦ (x1 ∧ x3).

t t-
-

z1

x1

x2

z3t t-
-

x1

x3

z2

Figure 4.5. G(r) for r = (x1 ◦ x2) ∧ (x1 ◦ x3)

If the set of vertex labels for G(r) is {z1, . . . , z`}, then consider the
following strong Maltsev condition associated to p ⊆ r: There exist
m-ary terms F1, . . . , F` for which the following identities are satisfied:

(i) F1(y1, . . . , ym) ≈ y1,
(ii) F2(y1, . . . , ym) ≈ y2, and

(iii) an identity of the form Fi(variables) ≈ Fj(variables) for each
edge (zi, zj) in G(r). The pattern of the variables is determined
as follows. Given a variable xk, let Ek be the equivalence
relation on the set Y of vertex labels of G(p) defined by yi Ek yj
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if yi and yj belong to the same “xk-component”, by which we
mean that there is an undirected path from yi to yj in G(p)
consisting of xk-labeled edges. Let τk : Y → Y be a transversal
for Ek. Now, if (zi, zj) is labeled by xk, then the identity
associated with (zi, zj) is

Fi(τk(y1), . . . , τk(ym)) ≈ Fj(τk(y1), . . . , τk(ym)).

This is a linear strong Maltsev condition. The idempotence of F1, i.e.,
F1(x, . . . , x) ≈ x, is a consequence of identity (i) from above. There is
a directed path in G(r) from the vertex labeled z1 to any other vertex,
and for any (zi, zj) in such a path the identity from (iii) above has
the consequence Fi(x, . . . , x) ≈ Fj(x, . . . , x). Thus, the idempotence of
each Fk follows from the identities (i) and (iii).

In our illustrative example, (4.3), we have p = x1 ∧ (x2 ◦ x3) and
r = (x1 ∧ x2) ◦ (x1 ∧ x3), and G(p) and G(r) are depicted in Figures 4.4
and 4.5. The associated Maltsev condition involves three ternary terms
F1, F2 and F3, corresponding to the z’s in Figure 4.5. The equivalence
relation Ek on the vertex labels of G(p) associated to the xk-component
can be read off Figure 4.4; we represent them by their partition of
{y1, y2, y3}: E1 ↔ y1y2/y3, E2 ↔ y1y3/y2, and E3 ↔ y1/y2y3. The
transversals we choose for these equivalence relations are the functions
τk which assign to each element of Y the Ek-related element whose
subscript is smallest. With these choices, the Maltsev condition asserts
that the following identities hold.

• F1(y1, y2, y3) ≈ y1,
• F2(y1, y2, y3) ≈ y2,
• and corresponding to τ1, τ2, and τ3:

– F1(y1, y1, y3) ≈ F2(y1, y1, y3) ≈ F3(y1, y1, y3),
– F1(y1, y2, y1) ≈ F3(y1, y2, y1), and
– F2(y1, y2, y2) ≈ F3(y1, y2, y2).

Next we argue that the congruence lattices of algebras in a variety
V satisfy p ⊆ r if and only if V satisfies the strong Maltsev condition
defined above in (i)—(iii). We begin by saying what we will mean by
a “generic” pair (u, v) ∈ p. Let F = FV(Y ) be the free algebra in V
generated by Y = {y1, . . . , ym}. For each edge label xk in G(p) let θk
be the congruence on F generated by all pairs (ys, yt) that are edges
in G(p) with label xk, i.e., θk = CgF(Ek) where Ek is defined as above.
This is the least congruence on F that relates generators yi and yj if
yi is connected to yj in G(p) by edges labeled xk. By Lemma 3.6 (1),
θk is the kernel of the retraction τ̂k : F → F induced by the function
τk : Y → Y defined in (iii) above. It is the pair (y1, y2) =: (u, v) that
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will be called a generic pair (u, v) ∈ p. The fact that a “generic pair
in p” actually is in p(θ1, . . . , θn) follows from Claim 4.8 (1).

If V satisfies p ⊆ r, then the generic pair in p must belong to r,
i.e., (y1, y2) ∈ r(θ1, . . . , θn) in F. Using only the fact that (y1, y2) ∈
r(θ1, . . . , θn) we will prove that V satisfies the Maltsev condition de-
scribed above. By Claim 4.8 (2), the fact that (y1, y2) ∈ r(θ1, . . . , θn)
implies that there exist f1 = y1, f2 = y2, f3, . . . , f` ∈ F such that the as-
signment zs 7→ fs has the property that (fi, fj) ∈ θk whenever (zi, zj) is
an xk-labeled edge of G(r). Since F is generated by Y = {y1, . . . , ym},
there exist terms Fi such that fi = Fi(y1, . . . , ym) for all i. Since
F1(y1, . . . , ym) = y1 holds as a relation among the free generators of F,
it follows that F1(y1, . . . , ym) ≈ y1 holds as an identity in V. Similarly,
F2(y1, . . . , ym) ≈ y2 holds in V. For each xk-labeled edge (zi, zj) we
have

Fi(τk(y1), . . . , τk(ym)) = τ̂k(Fi(y1, . . . , ym))
= τ̂k(fi)
= τ̂k(fk)
= Fj(τk(y1), . . . , τk(ym)),

since (fi, fj) ∈ θk = ker(τ̂k). Since Fi(τk(y)) = Fj(τk(y)) holds as a
relation among free generators, Fi(τk(y)) ≈ Fj(τk(y)) holds as an iden-
tity in V. Altogether this shows that V satisfies the Maltsev condition
described in (i)—(iii) above.

Conversely assume that V satisfies the Maltsev condition we have
described. Choose any A ∈ V and congruences α1, . . . , αn. To show
that p(α1, . . . , αn) ⊆ r(α1, . . . , αn), choose (a1, a2) ∈ p(α1, . . . , αn). Ac-
cording to Claim 4.8 (2), there is an assignment v : Y → A : ys 7→ as of
the variables of G(p) in A such that (ai, aj) ∈ αk if (yi, yj) is labeled by
xk. If v̂ : FV(Y ) → A is the extension of v to a homomorphism, and
θk is the congruence generated by all pairs (yi, yj) whose edge label in
G(p) is xk, then v̂(θk) ⊆ αk since v̂((yi, yj)) = (ai, aj) ∈ αk for any
generating pair (yi, yj) of θk.

Now consider the assignment Z → F : zs 7→ Fs(y1, . . . , ym) where
Z = {z1, . . . , z`}. The identities (i)—(iii) of our Maltsev condition
guarantee respectively that

(i) z1 7→ F1(y) = y1,
(ii) z2 7→ F2(y) = y2, and

(iii) if (zi, zj) is an xk-labeled edge of G(r), then (Fi(y), Fj(y)) ∈ θk.
By Claim 4.8 (1), these conditions yield (y1, y2) ∈ r(θ1, . . . , θn), hence

(a1, a2) = v̂((y1, y2)) ∈ v̂(r(θ1, . . . , θn)) ⊆ r(α1, . . . , αn).
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Since the pair (a1, a2) ∈ p(α1, . . . , αn) was arbitrary, we derive that
p ⊆ r holds throughout V.

Recall that in the third paragraph of this proof we reduced the proof
of this theorem to two claims: (a) any variety satisfying the congruence
inclusion pi ⊆ Q =

⋃
rj must satisfy a congruence inclusion of the

form pi ⊆ rj for some j, and that (b) the class of varieties satisfying
any particular inclusion pi ⊆ rj is definable by an idempotent linear
strong Maltsev condition. We have just completed the proof of a strong
form of (b): the class of varieties satisfying pi ⊆ rj is definable by an
idempotent linear strong Maltsev condition which expresses the fact
that (u, v) ∈ rj for a generic pair (u, v) of pi. Thus, we obtain (a) as
well: a variety V that satisfies pi ⊆ Q =

⋃
rj must satisfy (u, v) ∈ rj

for some j and some generic pair (u, v) of pi, and for this i and j we
have pi ⊆ rj. �

For future reference we point out that this proof shows that the class
of varieties satisfying a congruence inclusion of the form p ⊆ r, where p
and r are {◦,∧}-terms, is definable by a strong Maltsev condition, and
that the class of varieties satisfying a congruence inclusion of the form
p ⊆ ⋃i∈ω ri, where p and ri are {◦,∧}-terms is definable by a Maltsev
condition, provided the ri’s are increasing.

Corollary 4.9. If a variety satisfies a nontrivial meet continuous
congruence identity, then it satisfies a nontrivial idempotent Maltsev
condition.

4.2. Congruence Identities From Maltsev Conditions

We prove the converse to Corollary 4.9 in Theorem 4.12 of this
section.

Theorem 4.10. Let V be a variety that satisfies a nontrivial idem-
potent Maltsev condition. If A ∈ V has congruences α, β, γ, δ satisfying

(1) α ∩ (β ◦ γ) ∩ (γ ◦ β) ⊆ δ ⊆ α ⊆ β ∨ γ and
(2) C(β ∨ γ, α; δ),

then δ = α.

Proof. Let f(x1, . . . , xn) be a Taylor term for V, and let N =
{1, . . . , n} be the set of subscripts of variables in this term. The i-th
Taylor identity has the form

f(x1, . . . , xn) ≈ f(y1, . . . , yn)

where (xj, yj) ∈ {(x, x), (x, y), (y, x), (y, y)} for all j, and (xi, yi) =
(x, y). As in the proof of Theorem 3.23, partition N into blocks
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{B1, . . . , B5} where B1 consists of those j ∈ N for which (xj, yj) =
(x, x), B2 consists of those j 6= i for which (xj, yj) = (x, y), B3 = {i},
B4 consists of those j ∈ N for which (xj, yj) = (y, x), and B5 consists of
those j for which (xj, yj) = (y, y). Let fi(z1, z2, z3, z4, z5) be the 5-ary
term obtained from f by substituting the variable z1 for the variable
xj of f(x1, . . . , xn) if j ∈ B1, z2 if j ∈ B2, and so on. The i-th Taylor
identity is now fi(x, x, x, y, y) ≈ fi(x, y, y, x, y).

Now suppose that A ∈ V has congruences α, β, γ, δ satisfying all
the hypotheses of the theorem, and also satisfying α 6= δ. Then, since
δ ≤ α ≤ β ∨ γ, there is a least k such that α ∩ (β ◦k γ) 6⊆ δ. This k is
at least 2 since

(α ∩ β) ∪ (α ∩ γ) ⊆ α ∩ (β ◦ γ) ∩ (γ ◦ β) ⊆ δ.

By interchanging the roles of β and γ if necessary we may assume that
α ∩ (β ◦k−1 γ) ⊆ δ and α ∩ (γ ◦k−1 β) ⊆ δ.

Choose (u, v) ∈ α ∩ (β ◦k γ)− δ, and suppose that

u = u0 β u1 γ u2 · · ·uk = v

is a β ◦k γ-chain connecting u to v. If p(x, y, z) = fi(u0, x, y, z, u1), then
for k > 2 the sequence

r = p(u1, u1, u0) γ p(u1, u2, u0) β p(u0, u3, u1)
γ p(u0, u4, u1) β · · · p(u0, uk, u1) = s

is a γ ◦k−1 β-chain. Moreover, the i-th Taylor identity implies that

p(u0, u0, u1) = fi(u0, u0, u0, u1, u1) = fi(u0, u1, u1, u0, u1) = p(u1, u1, u0),

so r = p(u0, u0, u1) is α-related to s = p(u0, uk, u1) (since (u0, uk) ∈ α).
Thus (r, s) ∈ α ∩ (γ ◦k−1 β) ⊆ δ when k > 2. If k = 2, then the same
conclusion (that (r, s) ∈ δ) may be reached as follows. Starting with
the same β ◦k γ-chain u = u0 β u1 γ u2 = v, and the same polynomial
p(x, y, z) = fi(u0, x, y, z, u1), we obtain a chain

r = p(u1, u1, u0) γ p(u1, u2, u0) β p(u0, u2, u1) = s.

This chain is not shorter (it has length k = 2 also), but it begins with
γ instead of β. All other conclusions from the k > 2 case remain valid,
in particular we have

r = p(u1, u1, u0) = p(u0, u0, u1) α p(u0, uk, u1) = s.

This shows that (r, s) ∈ α ∩ (γ ◦ β). But since (r, s) is an image of
(u0, u2) = (u, v) under the polynomial p(u0, x, u1), and (u, v) ∈ β ◦ γ,
we even have (r, s) ∈ α ∩ (β ◦ γ) ∩ (γ ◦ β) ⊆ δ.

We now have

fi(u0, u0, u0, u1, u1) = p(u0, u0, u1) = r
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and

fi(u0, u0, uk, u1, u1) = p(u0, uk, u1) = s,

so from (r, s) ∈ δ we get

fi(u0, u0, u0, u1, u1) δ fi(u0, u0, uk, u1, u1).

Since C(β ∨γ, α; δ) holds, we may change underlined values from u1 to
u0 to obtain

fi(u0, u0, u0, u0, u0) δ fi(u0, u0, uk, u0, u0),

which we write as

fi(u, u, u, u, u) δ fi(u, u, v, u, u).

This implies that for our original Taylor term f we have

f(u, . . . , u, v, u, . . . , u) δ f(u, u, . . . , u) = u

where the v occurs in the i-th argument of f . This holds for every i.
We now argue that the relation

f(v, . . . , v, u, . . . , u) δ u ,

where the last v occurs in the i-th argument of f , also holds for every i.
The facts that (u, v) ∈ α ≤ β ∨ γ and C(β ∨ γ, α; δ) imply that we

may change the underlined u to v in

f(v, . . . , v, u, u, . . . , u) δ u = f(u, . . . , u, u, u, . . . , u)

to obtain

f(v, . . . , v, v, u, . . . , u) δ u = f(u, . . . , u, v, u, . . . , u)

By our earlier conclusions, the value f(u, . . . , u, v, u, . . . , u) on the right
side is δ-related to u. By induction and idempotence we get v =
f(v, v, . . . , v) δ u, which is a contradiction. �

The hypotheses of the previous theorem are consequences of purely
order-theoretic conditions. For the statement of the next lemma, let
(p, q, r) be a triple of lattice variables, and define lattice words p[0] := p,
q[0] := q, r[0] := r, and p[n+1] := p[n]∧(q[n]∨r[n]), q[n+1] := q[n]∧(p[n]∨r[n]),
r[n+1] := r[n]∧(p[n]∨q[n]). If (α, β, γ) is a triple of congruences on A, then
α[n] := p[n](α, β, γ), β[n] := q[n](α, β, γ), γ[n] := r[n](α, β, γ) ∈ Con(A).

Lemma 4.11. Let (α, β, γ) be a triple of congruences on A, and
let δ be a congruence on A. The following two conditions imply the
corresponding conditions of Theorem 4.10.

(1) α[n] ≤ δ ≤ α ≤ β ∨ γ for some n.
(2) α ∧ β = α ∧ γ = δ.
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Proof. Choose (u, w) ∈ α∩(β◦γ), There is a v such that u β v γ w.
For k = 0, these three elements are related as in the following tri-
angle: If u, v and w are related in this way for some k ≥ 0, then

r r
r

�
�
�
��

T
T
T
TT

u w

v

α[k]

β[k] γ[k]

Figure 4.6.

(u, w) ∈ α[k] ∩ (β[k] ∨ γ[k]) = α[k+1] and similarly (u, v) ∈ β[k+1] and
(v, w) ∈ γ[k+1]. This shows that α ∩ (β ◦ γ) ⊆ α[k] for all k. If α[n] ≤ δ
holds for some n, then we have

α ∩ (β ◦ γ) ∩ (γ ◦ β) ⊆ α ∩ (β ◦ γ) ⊆ α[n] ⊆ δ,

so the first condition of this lemma implies the first condition of The-
orem 4.10.

Now if α ∧ β = α ∧ γ = δ, then we have C(β, α; δ) and C(γ, α; δ)
according to item (8) of Theorem 2.19. By the semidistributivity of
the centralizer in its first variable (Theorem 2.19 (5)) we derive that
C(β ∨ γ, α; δ) holds. This shows that the conditions of this lemma
imply those of Theorem 4.10. �

Now we are prepared to prove the main result of this section.

Theorem 4.12. The following conditions on a variety V are equiv-
alent.

(1) V satisfies an idempotent Maltsev condition that fails in the
variety of sets.

(2) The quasi-identity

(4.4) ((p ∧ q) ≈ s) & ((p ∧ r) ≈ s) & (p[2] ≈ s) → ((p ∧ (q ∨ r)) ≈ s)

holds in the congruence lattices of algebras in V.
(3) Quasi-identity (4.4) holds in the meet continuous congruence

variety of V.
(4) V satisfies a nontrivial meet continuous congruence identity.
(5) V satisfies a congruence inclusion of the form

α ∩ (β ◦4 γ) ⊆ w(α, β, γ),

for some lattice word w(p, q, r) such that w(p, q, r) < p∧(q∨r)
in the free lattice FL({p, q, r}).
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(6) For some k ≥ 4, V satisfies a congruence inclusion of the
form α ∩ (β ◦k γ) ⊆ w(α, β, γ), where w(p, q, r) < p ∧ (q ∨ r)
in FL({p, q, r}).

A seventh equivalent condition is described in the remarks following
the proof.

Proof. To see that (1) =⇒ (2), choose an assignment of variables
p 7→ α, q 7→ β, r 7→ γ, s 7→ δ in Con(A) for some A ∈ V for which
the premises of quasi-identity (4.4) are satisfied. Then the congruences
α′ := α∧(β∨γ), β, γ and δ satisfy the conditions of Lemma 4.11. (This
uses the fact that α′ ≤ α, so α′[2] ≤ α[2] = δ.) Hence by Theorem 4.10

we have α ∧ (β ∨ γ) = α′ = δ, which shows that the conclusion of
quasi-identity (4.4) is satisfied by this assignment.

To show that (2)⇐⇒(3) we argue that quasi-identity (4.4) is equiv-
alent to a meet continuous lattice identity. This will follow from The-
orem 2.23 if we show that the words w1(p, q, r) := p ∧ q, w2(p, q, r) :=
p ∧ r, and w3(p, q, r) := p[2] satisfy the hypotheses of Theorem 2.23.
For this we must check the comparabilities w1 ≤ q, w2 ≤ r and wi ≤
p ∧ (q ∨ r) in the free lattice over {p, q, r}. The only nontrivial thing
to verify is that p[2] ≤ p ∧ (q ∨ r). This follows from the definition
p[2] := p[1] ∧ (q[1] ∨ r[1]) ≤ p[1] := p ∧ (q ∨ r).

The implication (3)=⇒(4) follows from the fact that quasi-identity
(4.4) fails in some meet continuous lattice, e.g. the lattice D1. The
implication (4)=⇒(1) is Corollary 4.9, so we have proved that the first
four statements of this theorem are equivalent.

By Remark 2.24, quasi-identity (4.4) is equivalent to the meet con-
tinuous identity

(4.5) δw(p, q, r) ≈ p ∧ (q ∨ r).
for some meet continuous lattice word δw, computed from the premises
of (4.4), which satisfies δw(p, q, r) ≤ p ∧ (q ∨ r) in FLMC

({p, q, r}).
Since this identity is nontrivial, δw(p, q, r) is in fact strictly smaller
than p ∧ (q ∨ r) in FLMC

({p, q, r}). Because of the equivalence of the
first four statements of this theorem, we may assume that the meet
continuous congruence identity referred to in statement (4) is identity
(4.5).

To prove that V satisfies α ∩ (β ◦4 γ) ⊆ w(α, β, γ) for some word
w satisfying w(p, q, r) < p∧ (q ∨ r) we begin with a generic occurrence
of the situation “(u, v) ∈ α ∩ (β ◦4 γ)” in V. That is, we let F =
FV(u, v, x, y, z) be the free V-algebra on five generators, and let α =
CgA(u, v), β = CgA((u, x), (y, z)), and γ = CgA((x, y), (z, v)). The free
generators are related as indicated in Figure 4.7. Since α ∩ (β ◦4 γ) ⊆
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r r r r r
β γ β γ

α

u x y z v

Figure 4.7.

α ∩ (β ∨ γ) and V satisfies (4.5) as a congruence identity we get that

(u, v) ∈ α ∩ (β ◦4 γ) ⊆ α ∩ (β ∨ γ) = δw(α, β, γ) .

Under the identification of FLMC
({p, q, r}) with the ideal lattice of

FL({p, q, r}) the word δw(p, q, r) corresponds to an ideal D of ordinary
lattice words w(p, q, r), each of which is strictly less than p∧(q∨r) (since
w(p, q, r) ≤ δw(p, q, r) < p∧(q∨r)). The assignment p 7→ α, q 7→ β, r 7→
γ extends to a homomorphism ϕ : FLMC

({p, q, r})→ Con(F) into the
congruence lattice of the 5-generated free algebra of V. This homomor-
phism assigns to each w ∈ D the congruence w(α, β, γ), and assigns to
δw the union

⋃
w∈D w(α, β, γ) = δw(α, β, γ). Since (u, v) ∈ δw(α, β, γ),

we must have (u, v) ∈ w(α, β, γ) for some w ∈ D. Since (u, v) is a
generic element of α ∩ (β ◦4 γ) the inclusion α ∩ (β ◦4 γ) ⊆ w(α, β, γ)
holds throughout V. This completes the proof that (4)=⇒(5).

The implication (5)=⇒(6) is trivial, so we now prove that (6)=⇒(1).
Item (6) asserts that V satisfies a certain congruence inclusion in the
signature {∨,∧, ◦}. The class of varieties satisfying any such inclusion
is definable by idempotent Maltsev conditions. To prove that at least
one of the defining Maltsev conditions satisfied by V is nontrivial it
suffices to prove that the congruence inclusion in (6) fails in the variety
of sets. To show this, let A = 〈{a0, a1, . . . , ak}; ∅〉 be a (k+ 1)-element
set, and let α = CgA(a0, ak), β = CgA({(ai, ai+1) | i even}), γ =
CgA({(ai, ai+1) | i odd}). Then α, β and γ relate the elements of A
as indicated in Figure 4.8. These congruences generate a sublattice

r r r r r rq q q
β γ β γ

α

a0 a1 a2 a3 a4 ak

Figure 4.8.

of Con(A) = Eq(A) isomorphic to D1, labeled as in Figure 4.9. Let
ϕ : FL({p, q, r})→ Con(A) be the lattice homomorphism determined
by p 7→ α, q 7→ β, r 7→ γ. Since im(ϕ) ∼= D1 is a finite lower bounded
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lattice, for each a ∈ im(ϕ) there is a least element b ∈ FL({p, q, r})
such that ϕ(b) ≥ a. There is a procedure described in Lemma 2.7 of
[16] for calculating this least b. Applying it to our situation shows that
the least b ∈ FL({p, q, r}) such that ϕ(b) ≥ α is b = p ∧ (q ∨ r). Since
we assume in (4) that w(p, q, r) < p ∧ (q ∨ r), we get that

w(α, β, γ) = ϕ(w(p, q, r)) 6≥ α = CgA(u, v) .

Hence (u, v) ∈ α∩ (β ◦4 γ)−w(α, β, γ), which proves that the inclusion
in (5) fails in the variety of sets. �

Remark 4.13. Quasi-identity (4.4) satisfies (W). (Recall from Sec-
tion 2.2 that to check that a quasi-identity Q satisfies (W) it suffices to
check that (W) holds in the partial lattice P(Q) of the Q-configuration.
For (4.4) this partial lattice has only twelve distinct elements, so the
verification is not difficult. In fact, if one first uses the axioms of lattice
theory to simplify p[2] = p[1] ∧ (q[1] ∨ r[1]) to

p ∧ (q[1] ∨ r[1]) = p ∧ ((q ∧ (p ∨ r)) ∨ (r ∧ (p ∨ q))),
then the associated partial lattice only has nine elements.) The theo-
rem just proved, together with Theorem 2.22, shows that quasi-identity
(4.4) is the weakest congruence quasi-identity in the collection of non-
trivial congruence quasi-identities satisfying (W). That is, if Q is any
nontrivial quasi-identity satisfying (W) and Q holds in all congruence
lattices of algebras in some variety V, then V satisfies a nontrivial
idempotent Maltsev condition by Theorem 2.22. Now, from (1)=⇒(2)
of Theorem 4.12 we get that quasi-identity (4.4) is also satisfied by all
congruence lattices of algebras in V. Thus any variety satisfying Q as
a congruence quasi-identity also satisfies (4.4).

Problem 4.14. Is there a weakest congruence quasi-identity (not
necessarily satisfying (W))?
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Problem 4.14 is related to Problems 4.3 and 4.4.

Remark 4.15. It is natural to be curious about the effect of re-
placing p[2] with some other p[n] in item (2) of Theorem 4.12. The
quasi-identities

Qn : ((p ∧ q) ≈ s) & ((p ∧ r) ≈ s) & (p[n] ≈ s) → ((p ∧ (q ∨ r)) ≈ s)

become formally stronger as n increases, since

((p ∧ q) ≈ s) & ((p ∧ r) ≈ s) & (p[n] ≈ s) → (p[n+1] ≈ s)

holds in all lattices. But Q1 is a tautology, and for n ≥ 2 all Qn

are equivalent. For, if some assignment p 7→ a, q 7→ b, r 7→ c, s 7→ d
witnesses a failure of Qn but not Qn−1, then p 7→ a[n−2], q 7→ b[n−2], r 7→
c[n−2], s 7→ d is an assignment witnessing a failure of Q2.

It is also natural to be curious about the effect of replacing the
numbers 4 and k (≥ 4) in items (5) and (6) of Theorem 4.12 with
smaller numbers. It happens that there is a slightly more complicated
condition for k = 3 that is equivalent to the other conditions of Theo-
rem 4.12, but there is no similar condition for k = 2.

To state the condition for k = 3, recursively define ternary lattice
words as follows: p0 = p, r0 = r, pn+1 = p ∧ (q ∨ rn), and rn+1 =
r ∧ (q ∨ pn). The equivalent condition for k = 3 is:

(7) V satisfies a congruence inclusion of the form

α ∩ (β ◦3 γ) ⊆ w(α, β, γ) ,

where w(p, q, r) is a lattice word such that w(p, q, r) 6≥ pn for
any n in the free lattice FL({p, q, r}).

To see why it is necessary to phrase item (7) in this more compli-
cated way, suppose that (u, v) ∈ α∩ (β ◦ γ ◦ β). Then, for k = 0, there
are elements x and y related to u and v as in Figure 4.10. But it is

r
r
r
r

β

γk

β

αku

x y

v

Figure 4.10.

easy to see that if u, v, x and y are related in this way for some k, then
(u, v) ∈ αk ∩ (β ∨ γk) = αk+1 and (x, y) ∈ γk ∩ (β ∨ αk) = γk+1. By
induction α ∩ (β ◦3 γ) ⊆ αk for all k. This shows that if a lattice word
w(p, q, r) is above pn for some n, then α ∩ (β ◦3 γ) ⊆ αn ⊆ w(α, β, γ)
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holds in any lattice of equivalence relations. Thus, for an inclusion
α∩ (β ◦3 γ) ⊆ w(α, β, γ) to be nontrivial, we must have w(p, q, r) 6≥ pn

for all n. This is different from inclusions of the form α ∩ (β ◦k γ) ⊆
w(α, β, γ) for k ≥ 4, since these inclusions are nontrivial as soon as
w(p, q, r) 6≥ p1 = p ∧ (q ∨ r).

Fortunately, that is the only modification of the condition on w that
is needed. To prove (4)=⇒(7), observe that the assignment of variables
in E1 defined by p 7→ α, q 7→ β, r 7→ γ, s 7→ 0 is one that satisfies the
premises but not the conclusion of quasi-identity (4.4).
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Figure 4.11. The lattice E1

An examination of the third paragraph of the proof of Theorem 2.23
reveals that the same assignment must therefore witness a failure of
the equivalent identity (4.5). Thus, if ϕ : FLMC

({p, q, r}) → E1 is the
extension of the assignment p 7→ α, q 7→ β, r 7→ γ to a homomorphism,
then ϕ(δw(p, q, r)) < ϕ(p ∧ (q ∨ r)) = α. On the other hand, an easy
induction shows that ϕ(pn) = α for all n. Hence δw(p, q, r) 6≥ pn
for all n in FLMC

({p, q, r}). Now, as in the proof of Theorem 4.12
(4)=⇒(5), the word w(p, q, r) lies below δw(p, q, r) in FLMC

({p, q, r}),
hence satisfies w(p, q, r) 6≥ pn for all n in FL({p, q, r}). This proves
(4)=⇒(7).

One can prove that (7)=⇒(1) in essentially the same way we proved
that (6)=⇒(1) using the number 3 in place of k. This time, define
A = 〈{a0, a1, a2, a3}; ∅〉, α = CgA(a0, a3), β = CgA((a0, a1), (a2, a3))
and γ = CgA(a1, a2). These congruences on A generate a sublattice
of Con(A) isomorphic to the lattice E1, therefore E1 should be used
in the argument in place of D1. Unlike D1, the lattice E1 is not lower
bounded. However it can be shown (using Theorems 2.2 and 2.3 of
[16]) that if ϕ : FL({p, q, r})→ Con(A) is the lattice homomorphism
determined by p 7→ α, q 7→ β, r 7→ γ, then the set of all b ∈ FL({p, q, r})
such that ϕ(b) ≥ α is the filter {t | t(p, q, r) ≥ pn, for some n}. If w
is as in item (7), then w is not in this filter, so ϕ(w) 6≥ α. As in the
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proof we gave for (6)=⇒(1), this implies that the congruence inclusion
α ∩ (β ◦3 γ) ⊆ w(α, β, γ) fails in A, hence fails in the variety of sets.

There is no analogous condition for k = 2 that is equivalent to the
other conditions of Theorem 4.12. The reason for this is that the con-
dition that α∩ (β ◦γ) ⊆ w(α, β, γ) is trivial if w(p, q, r) ≥ p[n] for some
n, as we showed in the first paragraph of the proof of Lemma 4.11.
On the other hand, Theorems 2.2 and 2.3 of [16] can be used to
show that if w(p, q, r) 6≥ p[n] for all n, then ϕ(w) 6≥ α for the ho-
momorphism h : FL({p, q, r}) → M3 : p 7→ α, q 7→ β, r 7→ γ, where
M3 is labeled as in Figure 4.12 Therefore, if the congruence inclusion
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Figure 4.12. The lattice M3

α∩(β◦γ) ⊆ w(α, β, γ) is nontrivial and holds throughout V, then when-
ever α, β and γ are congruences on some A ∈ V that generate a copy of
M3 it must be that α∩ (β ◦ γ) ⊆ α∩w(α, β, γ) � α. In particular, the
idempotent Maltsev condition associated with α ∩ (β ◦ γ) ⊆ w(α, β, γ)
precludes the possibility that α, β and γ generate a copy of M3 where
β ◦ γ = β ∨ γ. Such an idempotent Maltsev condition must fail
in any nontrivial variety of modules, since any nontrivial variety of
modules contains members whose congruence lattices contain sublat-
tices of permuting congruences isomorphic to M3. But we will prove
in Theorem 8.1 (10)=⇒(1) that any idempotent Maltsev condition
that fails in every nontrivial variety of modules implies congruence
meet semidistributivity. This shows that a congruence inclusion of
the type α ∩ (β ◦ γ) ⊆ w(α, β, γ) for some lattice word w is trivial if
w(p, q, r) ≥ p[n] for some n, and implies congruence meet semidistribu-
tivity if w(p, q, r) 6≥ p[n] for all n. Therefore any such inclusion is either
too weak or too strong to be equivalent to the existence of a Taylor
term. We emphasize, however, that this conclusion was reached un-
der the assumption that w is a lattice word. There do exist expressions
W (p, q, r) in the symbols ∨,∧ and ◦ such that the congruence inclusion
α ∩ (β ◦ γ) ⊆ W (α, β, γ) is nontrivial but does not imply congruence
meet semidistributivity for a variety. (E.g., Theorem 8.13 (2) of this
monograph, or Theorem 4.8 (2) and (3) of [52].)
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4.3. Omitted Sublattices

In this section we show that if V has a Taylor term, then certain
lattices cannot be embedded in congruence lattices of algebras in V.

Theorem 4.16. Let V be a variety that satisfies a nontrivial idem-
potent Maltsev condition and let A be a member of V.

(1) The lattices in Figure 4.13 do not occur in the meet continuous
congruence variety of V.
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Figure 4.13.

(2) The lattices in Figure 4.14 with the given centralities do not
occur in Con(A).
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Figure 4.14.

(3) The lattices in Figure 4.15 do not occur as sublattices of
Con(A).
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Proof. For the first claim of this theorem, the fact that V satisfies
a nontrivial idempotent Maltsev condition implies that the congruence
lattices of algebras in V satisfy quasi-identity (4.4) of Theorem 4.12 (2).
But in the proof of Theorem 4.12 we explained why that quasi-identity
is equivalent to a meet continuous identity, so in fact all members of
the meet continuous congruence variety of V satisfy quasi-identity (4.4).
Item (1) of this theorem follows from the fact that D1,E1 and G all
fail quasi-identity (4.4) of Theorem 4.12. (In each case the assignment
p 7→ α, q 7→ β, r 7→ γ, s 7→ δ witnesses a failure.)

For the second claim, observe that α[2] ≤ δ ≤ α ≤ β ∨ γ holds for
the indicated congruences in both N5 and D2. By Lemma 4.11, this
is enough to establish the first condition of Theorem 4.10. To show
that the two configurations are forbidden it suffices to show that the
second condition of Theorem 4.10 is satisfied, since δ 6= α. The second
condition of Theorem 4.10, that C(β∨γ, α; δ) holds, is equivalent to the
conjunction of C(β, α; δ) and C(γ, α; δ) since the centralizer relation
is monotone and meet semidistributive in its first variable. In the two
examples C(γ, α; δ) holds simply because γ = δ. In the first assertion
concerning N5 we have C(β, α; δ) because we have assumed it. The
second assertion concerning N5 can be reduced to the first, as follows.
We start with our assumption that C(β, β; β ∧ δ) holds, derive C(β ∨
δ, β ∨ δ; δ) using Theorem 3.26, and then derive C(β, α; δ) from the
monotonicity of the centralizer in its first two variables.

For D2 we have assumed only that C(τ, τ ; σ) holds. From this and
α, β ≤ τ we get that C(β, α; σ) holds. We have C(β, α;α) trivially,
so by item (6) of Theorem 2.19 and the fact that δ = α ∧ σ we get
that C(β, α; δ) holds. Since α, β and δ generate a sublattice isomor-
phic to N5, we get a contradiction from the argument in the previous
paragraph.
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For the part of the third claim concerning E2, C(α, β; β ∧ δ) and
C(γ, β; β ∧ δ) hold by Theorem 2.19 (8). We can use Theorem 2.19 (5)
and (1) to conclude first that C(α ∨ γ, β; β ∧ δ) holds, and then that
C(β, β; β ∧ δ) holds. By applying item (2) of this theorem to the
sublattice generated by α, β and δ we obtain a contradiction. One can
handle the second lattice in the third claim by similar arguments. �

Remark 4.17. The combination of Theorem 2.2 (1) and Theo-
rem 4.16 shows that if L is a finite sublattice of Con(A) where A has
a Taylor term, and M3 is not a sublattice of L, then L is meet semidis-
tributive. This is the strongest conclusion about L that can be derived
from these hypotheses, since the variety S of semilattices has a Taylor
term, M3 is not embeddable in Con(A) for any A ∈ S, yet every finite
meet semidistributive lattice is embeddable in the congruence lattice of
some semilattice. (To show this, combine Theorem 4.4.12 of [25] with
the main result of [14].)

4.4. Admitted Sublattices

Theorem 4.16 shows that if V has a Taylor term, then certain lat-
tices cannot be embedded in Con(A) for any A ∈ V. If, on the other
hand, V does not have a Taylor term, then many lattices must appear
as sublattices of congruence lattices of algebras in V. The strongest
result of this sort that we know is the following.

Theorem 4.18. Let V be a variety that satisfies no nontrivial idem-
potent Maltsev condition. If L is a finitely presentable lattice satisfying
Whitman’s condition (W) (Definition 2.3), then L ∈ L(V).

Proof. In order to prove that L is a member of L(V) it suffices to
prove that it is possible to separate the points of L by homomorphisms
into members of L(V), since L(V) is a prevariety. So, choose elements
p 6= q in L which are to be separated.

Suppose that L is presented by 〈G | R〉 where G = {g1, . . . , gn},
g = (g1, . . . , gn) and R = {p1(g) = q1(g), . . . , pm(g) = qm(g)}. There
exist n-ary terms p(x) and q(x) such that p = p(g) and q = q(g). The
quasi-identity

(4.6)

m∧

i=1

(pi(x) = qi(x))→ (p(x) = q(x)).

is nontrivial because it fails in L when x = g. The quasi-identity (4.6)
satisfies (W) (Definition 2.4), since L does, so by Theorem 2.22 the
class of varieties satisfying (4.6) is definable by idempotent Maltsev
conditions.
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consider labelling this lattice with alpha, beta, gamma, delta.  my first attempt didn't work.
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in most, or maybe all other instances, the \approx symbol is used instead of = in quasi-identities.
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What this shows is that if V satisfies no nontrivial idempotent Mal-
tsev condition, then V has an algebra A such that Con(A) fails quasi-
identity (4.6). If (θ1, . . . , θn) is a witness of the failure, then the func-
tion gi 7→ θi extends to a homomorphism h : L → Con(A) for which
h(p) 6= h(q). This proves the theorem. �

In the case where V is locally finite and L is finite, Theorem 4.18
is part of Theorem 6.22 of [34].

For later reference, and to illustrate Theorem 4.18, we next describe
a class of lattices satisfying (W).

Definition 4.19. A graph is a pair G = 〈V ;E〉 where V is a set,
E is a set of 2-element subsets of V , and V ∩ E = ∅. Elements of V
are called vertices and elements of E are called edges. G is discrete
if E = ∅.

If G is a graph, then the lattice of G (or graph lattice) is the
partially ordered set L[G] obtained from 〈V ∪ E;∈〉 by adding a new
top element 1 and a new bottom element 0.

L[G] has height ≤ 3 and, when V 6= ∅, has V as its set of atoms
and has each element of E as a coatom of height 2.
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Figure 4.16. The shape of L[G]

L[G] is indeed a lattice. For, 〈V ∪E;∈〉 is a poset of height 1 that
does not have elements ordered as in Figure 4.17, since we have defined
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graphs to exclude multiple edges e, f between distinct vertices a, b. It
is easy to see that if one adds new top and bottom elements to any
poset of height 1 with this property one always obtains a lattice.

Lemma 4.20. A lattice L of height ≤ 3 satisfies (W) if and only if
L has no sublattice isomorphic to M3,3 (Figure 4.18).

r
r
r
r
r
r
r
r

@
@
@

�
�
�
@
@
@

�
�
�

�
�
�

@
@
@

�
�
�

v a b

c d u

Figure 4.18. M3,3

In particular, any graph lattice or dual of a graph lattice satisfies
(W).

Proof. If L fails (W), then there exist elements a, b, c, d ∈ L such
that a∧b = u ≤ v = c∨d and {a, b, c, d}∩I[u, v] = ∅. These conditions
force 0 < u < x < 1, x ∈ {a, b}, and 0 < y < v < 1, y ∈ {c, d}. Since
the height of L is ≤ 3, it must be that u, c and d are atoms, while v, a
and b are coatoms (of height 2). In particular, this gives us that u < v.
The interval I[u, 1] has height 2, so it is isomorphic to Mm for some m,
and a, b and v are distinct coatoms in this interval. Similarly, I[0, v] is
isomorphic to Mn for some n ≥ 3, and c, d and u are distinct atoms
in this interval. This, is enough to show that a, b, c and d generate a
sublattice of L isomorphic to the one in Figure 4.18.

Conversely, if L satisfies (W), then any sublattice of L must satisfy
(W). Since M3,3 does not, it cannot be a sublattice of L.

To see that any graph lattice omits M3,3 as a sublattice, it is enough
to observe that the element v in Figure 4.18 has height 2 and dominates
at least three distinct atoms. If this happened in a sublattice of a graph
lattice, then v would represent an edge incident to at least three distinct
vertices, which is impossible. A dual argument works for duals of graph
lattices. �

Lemma 4.21. If G is a nondiscrete graph with at least 4 vertices,
then L[G] is a simple nonmodular lattice of height 3.

Proof. Since G has at least one edge, the height of G is exactly 3.
If G is modular, then the join of 2 distinct elements of height 1 in L[G]
(atoms, or vertices) is an element of height 2 (a coatom, or edge). This
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I don't think that you get simple lattices in all cases.  for example, when G = {a,b,c,d} and a is adjacent to all other elements, and there are no other edges, then L[G] has M_3 as a quotient (I think).
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means that any two vertices of G are adjacent, hence G is a complete
graph. Now suppose that a, b, c and d are 4 distinct vertices of G. Then
e := {a, b} and f := {c, d} are disjoint edges of G, so they are coatoms
that meet to zero in L[G]; i.e., they are elements of coheight 1 whose
meet has coheight > 2. This is impossible in a modular lattice.

Let θ be a nontrivial congruence on L[G], and let u < v be distinct,
comparable, θ-related elements. The hypotheses guarantee that there
is an atom a ≤ v for which a 6≤ u. (If v is an atom, choose a = v; if
v is an edge, choose a to be any incident vertex not equal to u; if v
is the top, choose a to be one of the four atoms not below u.) Hence
(0, a) = (a ∧ u, a ∧ v) ∈ θ. If there is a vertex b not adjacent to a,
then (b, 1) = (0 ∨ b, a ∨ b) ∈ θ. Now for each vertex c 6= b we have
(0, c) = (c ∧ b, c ∧ 1) ∈ θ. By hypothesis, G has at least 3 distinct
vertices other than b, so L[G] has at least 3 distinct atoms θ-related to
0. But then the join of these atoms is θ-related to 0, and the join of
any 3 atoms in a graph lattice is the top. Thus, θ is the total relation
in the case that there exists a vertex b not adjacent to a.

In the remaining case G is a complete graph on at least 4 vertices.
If ` is any edge not incident to a, then (`, 1) = (0 ∨ `, a ∨ `) ∈ θ. From
this it follows that the meet of all edges ` not incident to the vertex a
is also θ-related to 1. These are the edges from the induced complete
graph on the vertex set V −{a}. Since V −{a} has at least 3 elements,
and a complete graph on ≥ 3 vertices has no vertex incident to all
edges, the meet of all edges not incident to a is zero. Again, θ is the
total relation. �

From Theorem 4.18 and Lemmas 4.20 and 4.21 we derive the fol-
lowing.

Theorem 4.22. If V has no Taylor term, then any graph lattice
is embeddable in the congruence lattice of some member of V. Hence,
there exist arbitrarily large finite, simple, nonmodular lattices that are
embeddable in congruence lattices of of members of V.

If we had defined graphs to allow loops on vertices, then we would
have found that the corresponding graph lattices still satisfy (W), so
Theorem 4.22 also applies to these lattices. Lattices of graphs with
loops are still usually nonmodular, but they need not be simple. For
example, this type of graph lattice is not simple if the underlying graph
has at least one isolated vertex with a loop.

We have shown that certain lattices are not embeddable into con-
gruence lattices of algebras in V if V has a Taylor term, while certain
lattices must be embeddable if V does not have a Taylor term. The
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two classes that we have described overlap, allowing us to characterize
the existence of a Taylor term according of the shapes of congruence
lattices of algebras in V.

Theorem 4.23. Let V be a variety and let L be a finitely presented
lattice satisfying (W) but failing quasi-identity (4.4). (For example, L
could be D1,E1 or G.) The following conditions are equivalent.

(1) V satisfies an idempotent Maltsev condition that fails in the
variety of sets.

(2) V satisfies a nontrivial meet continuous congruence identity.
(3) L does not appear as a sublattice of Con(A) for any A ∈ V.
(4) L is not in the meet continuous congruence variety of V.

Proof. The equivalence of (1) and (2) follows from Theorems 2.14
and 4.12. That (1)=⇒(4) follows from the argument we used in The-
orem 4.16 (1), which only required that the lattice in question failed
quasi-identity (4.4). The implication (4)=⇒(3) is trivial. Finally, the
contrapositive of (3)=⇒(1) follows from Theorem 4.18. �

Remark 4.24. As we stated at the end of Section 2.3, D1 is sub-
directly irreducible and projective in LMC . Therefore the equivalence
of items (3) and (4) of Theorem 4.23 for D1 is to be expected. But E1

and G are not projective in LMC , which makes the equivalence of (3)
and (4) for these lattices somewhat surprising.



CHAPTER 5

Rectangulation

In this chapter we introduce a term condition for rectangularity and
prove a representation theorem for rectangular tolerances. We explain
how the structure of rectangular tolerances improves in the presence of
a join term. We give three different Maltsev conditions that define the
class of varieties that omit rectangular tolerances.

5.1. Rectangular Tolerances

Definition 5.1. Let S and T be tolerances on an algebra A, let w
be a compatible quasiorder on A (i.e., w is a reflexive, transitive, binary
relation on A that is a subuniverse of A2). Then S rectangulates T
relative to w if for all u ∈ A and all

(5.1)

[
p q
r s

]
∈M(S, T ),

it is the case that

(5.2) u w q & u w r =⇒ u w s.

We indicate this by saying that R(S, T ;w) holds.

By interchanging the rows and columns of matrices one sees that
R(S, T ;w) holds if and only if

(5.3) u w q & u w r ⇐⇒ u w p & u w s

for every u ∈ A and every S, T -matrix in (5.1).

Theorem 5.2. Let A be an algebra with tolerances S, S ′, T, T ′, com-
patible quasiorders w,wj and a congruence δ. The following are true.

(1) If R(S, T ;w) holds and S ′ ⊆ S, T ′ ⊆ T , then R(S ′, T ′;w)
holds.

(2) If R(S, T ;wj) holds for all j ∈ J , then R(S, T ;
⋂
j∈J wj) holds.

(3) Let B be a subalgebra of A. If R(S, T ;w) holds in A, then
R(S|B, T |B;w |B) holds in B.

(4) If w is δ-closed (cf. Section 2.5), then R(S, T ;w) holds in A
if and only if R(S/δ, T/δ;w/δ) holds in A/δ.

(5) R(S, T ;w) holds if and only if R(T, S;w) holds.

88
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(6) R(S, T ; δ) holds if and only if SR(S, T ; δ) holds.

Proof. Items (1)–(4) are proved in the same way as items (1), (6),
(9) and (10) of Theorem 2.19.

Item (5) follows from the fact that the transpose of an S, T -matrix
is a T, S-matrix, and the definition of rectangulation is invariant under
transpose (as indicated in line (9) following Definition 5.1).

Item (6) follows from the fact that the definition of SR(S, T ; δ) is
the restriction of the definition of R(S, T ;w) to the case where w = δ
is a congruence. �

It follows from Theorem 5.2 (2) that for tolerances S and T on an
algebra A there is a least compatible quasiorder w such that R(S, T ;w)
holds, namely the intersection of all wj such that R(S, T ;wj) holds. If
some quasiorder wj is antisymmetric (equivalently, is a partial order),
then the intersection of all wj will also be antisymmetric. It is this
situation that interests us, so we make the following definition.

Definition 5.3. A tolerance S rectangulates a tolerance T if
R(S, T ;w) holds for some compatible partial order w. If S = T we say
that T is rectangular.

If w is the least compatible quasiorder such that R(S, T ;w) holds,
then [S, T ]R denotes the intersection of w with its converse v ( := w∪).

If S and T are tolerances on A, w is the least compatible quasiorder
such that R(S, T ;w) holds, and δ = [S, T ]R ( = w ∩ v), then δ is a
congruence on A and w is δ-closed. Since R(S, T ;w) holds, we get
from Theorem 5.2 (4) that R(S/δ, T/δ;w/δ) holds. Since w/δ is a
compatible partial order on A/δ, this means that S/δ rectangulates
T/δ in A/δ. Moreover, it follows from Theorem 5.2 (4) that δ = [S, T ]R
is the least congruence on A for which this statement is true. We record
this as:

Theorem 5.4. If S and T are tolerances on A, then [S, T ]R is the
least congruence δ ∈ Con(A) such that S/δ rectangulates T/δ in A/δ.

If S and T are disjoint tolerances, then it follows from Definition 5.1
that R(S, T ; 0) holds, and therefore [S, T ]R = 0. This describes a
trivial instance of rectangulation. If it happens that S ∩ T 6= 0 yet
still [S, T ]R = 0, then the intersection S ∩T is a nontrivial rectangular
tolerance (by Theorem 5.2 (1)). We spend the rest of this section
describing the structure of such objects.

Definition 5.5. An operation + on A is a semilattice operation
on A if it is
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(i) idempotent: ∀x ∈ A(x + x ≈ x);
(ii) commutative: ∀x, y ∈ A(x + y ≈ y + x); and
(iii) associative: ∀x, y, z ∈ A(x + (y + z) ≈ (x + y) + z).

If T is a tolerance on an algebra A, then a partial operation x + y
on A is a compatible semilattice operation on T if

(i) +: T → A is a homomorphism (with T considered as a sub-
algebra of A2); and

(ii) + is idempotent, commutative, and associative on each T -
block.

Theorem 5.6. Let A be an algebra and let θ be a congruence on A.
If θ supports a compatible semilattice operation, then θ is rectangular.

Proof. Let + be a compatible semilattice operation on θ. Define
a relation w by

a w b ⇐⇒ (a, b) ∈ θ and a = a+ b .

This is a partial order on A due to the facts that θ is reflexive and
transitive and + is a semilattice operation on θ-blocks. It is compatible
because θ and + are.

To show that R(θ, θ;w) holds, let
[
p q
r s

]
=

[
f(a,u) f(a,v)
f(b,u) f(b,v)

]

be a θ, θ-matrix, and suppose that u w q and u w r for some u ∈ A.
The definition of w forces the elements u, q and r to belong to the same
θ-block, and also forces u = u+ q = u+ r. This θ-block is closed under
+, so (u, q + r) ∈ θ. Moreover

u = u+ u = (u+ q) + (u+ r) = u+ (q + r) ,

proving that u w q + r. But

q + r = f(a,v) + f(b,u)
= f(a + b,v + u)
= f(a,u) + f(b,v)
= p+ s w s ,

so u w s. This completes the proof. �
Theorem 5.7. Let A be an algebra and let T be a tolerance on A.

The following conditions are equivalent

(1) T is rectangular.

(2) There is an algebra Â ∈ V(A) and a tolerance T̂ on Â such
that
(i) A is a subalgebra of Â;
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(ii) T ⊆ T̂ |A;

(iii) T̂ is rectangular; and

(iv) T̂ supports a compatible semilattice operation.

Proof. For (2)=⇒(1), we leave it to the reader to check our defini-

tions and verify that whenever A ≤ Â, T̂ is a tolerance on Â for which
T ⊆ T̂ |A, and T̂ rectangulates itself with respect to the partial order w,
then T rectangulates itself with respect to the restricted partial order
w |A. (In particular, (2)(iv) is not needed to prove that (2)=⇒(1).)
The real content of the theorem is the claim that (1)=⇒(2).

Assume that (1) holds, and that w is a compatible partial order on

A for which R(T, T ;w) holds. We will construct Â from an algebra B,
defined as follows. The universe of B consists of the nonempty order
ideals of the poset 〈A;w〉. (A subset I ⊆ A is an order ideal if x ∈ I
and x w y implies y ∈ I.) If f is a k-ary operation symbol in the
language of A, and I1, . . . , Ik ∈ B, then fB(I1, . . . , Ik) is defined to
be the order ideal I generated by the set of all elements of the form
fA(a1, . . . , ak) with ai ∈ Ii. (Thus, u ∈ I if and only if there exist
ui ∈ Ii such that fA(u1, . . . , uk) w u.) If a ∈ A, write 〈a〉 for the
principal order ideal generated by a in 〈A;w〉.

Claim 5.8. The function A → B : x 7→ 〈x〉 is a 1-1 homomor-
phism.

The fact that 〈 〉 is a 1-1 function follows from the fact that 〈A;w〉
is a partial order. To show that a typical k-ary basic operation f is
preserved by 〈 〉, choose a1, . . . , ak ∈ A. The ideal fB(〈a1〉, . . . , 〈ak〉)
consists of all elements u ∈ A for which there exist elements ui ∈ 〈ai〉
such that fA(u1, . . . , uk) w u. But since ai w ui and w is compatible,
this means that

fA(a1, . . . , ak) w fA(u1, . . . , uk) w u.

Thus u ∈ fB(〈a1〉, 〈a2〉, . . . , 〈ak〉) if and only if u ∈ 〈fA(a1, . . . , ak)〉,
which proves that 〈 〉 is a homomorphism.

This claim shows that we may view B as an extension of A. In
order to define a tolerance S on B whose restriction to A contains T ,
we first define

S ′ = {(I, J) ∈ B2 | (∀u ∈ I)(∃(v, w) ∈ (I × J) ∩ T )(v w u)}.
Now let S be the intersection of S ′ and its converse.

Let L be the language of A, and let L(∪) be the expansion of the
language to include the symbol ∪. By interpreting ∪ in B as union of
ideals we get an L(∪)-algebra 〈B;∪〉.
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Claim 5.9. S is a tolerance on 〈B;∪〉. Moreover, if (a, b) ∈ T ,
then (〈a〉, 〈b〉) ∈ S.

Since S is the intersection of S ′ and its converse, it will suffice to
prove that S ′ is a compatible reflexive relation of 〈B;∪〉, and that if
(a, b) ∈ T , then (〈a〉, 〈b〉) ∈ S ′.

Choose I ∈ B. For any u ∈ I the pair (u, u) ∈ (I × I) ∩ T , so
(I, I) ∈ S ′. This shows that S ′ is reflexive.

Next, suppose that (Ii, Ji) ∈ S ′, 1 ≤ i ≤ k, and that f is a k-ary
L-operation. Let I = f(I1, . . . , Ik) and J = f(J1, . . . , Jk). To see that
(I, J) ∈ S ′ choose u ∈ I. There exist ui ∈ Ii such that f(u1, . . . , uk) w
u, by the definition of B, and there exist (vi, wi) ∈ (Ii × Ji) ∩ T with
vi w ui, since (Ii, Ji) ∈ S ′. Since w is compatible, this means that

v := f(v1, . . . , vk) w f(u1, . . . , uk) w u.

Since T is also compatible, for w := f(w1, . . . , wk) ∈ J we have

(v, w) = f((v1, w1), . . . , (vk, wk)) ∈ T.
Thus, for our u ∈ I (which we chose arbitrarily) there exist (v, w) ∈
(I × J) ∩ T such that v w u. Hence (I, J) ∈ S ′, showing that S ′ is
compatible with all L-operations.

To show that S ′ is compatible with ∪, choose (I ′, J ′), (I ′′, J ′′) ∈ S ′
and let (I, J) = (I ′∪I ′′, J ′∪J ′′). Choose any u ∈ I = I ′∪I ′′. If u ∈ I ′,
then since (I ′, J ′) ∈ S ′ there is a pair

(v, w) ∈ ((I ′ × J ′) ∩ T ) ⊆ ((I × J) ∩ T )

such that v w u. The same conclusion holds if u ∈ I ′′, so we have that
(I, J) ∈ S ′. Hence S ′ is a compatible reflexive relation of 〈B;∪〉.

To finish the proof of the claim we must show that for (a, b) ∈
T we have (〈a〉, 〈b〉) ∈ S ′. To see that this is so, observe that for
any u ∈ 〈a〉 the pair (v, w) = (a, b) satisfies the required properties:
(v, w) ∈ (〈a〉 × 〈b〉) ∩ T and v w u.

We have constructed an algebra B, a tolerance S, and we have a
candidate ∪ for the compatible semilattice operation on S. For ∪ to be
compatible on S it must commute with the L-operations on S. This
won’t be true without some tinkering, so we factor by a congruence
that collapses all failures of compatibility. Specifically, let θ be the
L(∪)-congruence on B generated by all pairs of the form

〈 f(I1, . . . , Ik) ∪ f(J1, . . . , Jk), f(I1 ∪ J1, . . . , Ik ∪ Jk) 〉
where f ∈ L(∪) and each (Ii, Ji) ∈ S. Since θ is defined to be a congru-
ence of 〈B;∪〉, the quotient 〈B;∪〉/θ satisfies all equational properties
satisfied by 〈B;∪〉. In particular, ∪ is a semilattice operation of the
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quotient and all operations are monotone with respect to the semilat-
tice order.

Claim 5.10. If 〈U, V 〉 ∈ θ and u ∈ A, then U ⊆ 〈u〉⇐⇒V ⊆ 〈u〉.
Hence if 〈〈u〉, 〈v〉〉 ∈ θ, then u = v.

To see that this is so, it suffices to check the claim only in the case
where 〈U, V 〉 is a polynomial image of a generating pair for θ. Here, by
a polynomial, we mean a unary polynomial of 〈B;∪〉, although in our
argument we will only consider special unary polynomials of 〈B;∪〉.

Let C be any algebra. A basic translation of C is a unary poly-
nomial of the form q(x, c1, . . . , cn) where each ci ∈ C, and q is ob-
tained from some basic operation by permuting variables. It is known
(and not hard to see) that the congruence on C generated by some set
G ⊆ C×C can be described by first forming the closure of G under all
basic translations, and then generating an equivalence relation. Hence
(x, y) ∈ CgC(G) if and only if there is a sequence x = x0, . . . , xm = y
where each {xi, xi+1} = {p(g), p(h)} for some (g, h) ∈ G and some
unary polynomial p which is a composition of basic translations.

For us, the fact that for any f ∈ L we have

f(x ∪W1,W2, . . . ,Wk) = f(x,W2, . . . ,Wk) ∪ f(W1,W2, . . . ,Wk)
= f(x,W2, . . . ,Wk) ∪ Z

when all Wi ∈ 〈B;∪〉 and Z := f(W1, . . . ,Wk) implies that if a compo-
sition of basic translations of 〈B;∪〉 involves ∪, then it can be rewritten
so that it is a composition of basic translations not involving ∪, fol-
lowed by a single basic translation of the form p(x) = x ∪ Z. This
observation shows that to prove the claim it suffices to show that if
(H,K) is a generating pair for θ, then

p(H) ⊆ 〈u〉⇐⇒ p(K) ⊆ 〈u〉
when p has the form p(x) = q(x,W1, . . . ,Wk) ∪ Z where q is a compo-
sition of basic translations not involving ∪, and Wi, Z ∈ B.

Since the generating pairs for θ are comparable and the operations
of 〈B;∪〉 are monotone, to prove that

p(H) ⊆ 〈u〉⇐⇒ p(K) ⊆ 〈u〉
for a generating pair (H,K) it suffices to show that

U := p(f(I1, . . . , In) ∪ f(J1, . . . , Jn)) ⊆ 〈u〉 =⇒
V := p(f(I1 ∪ J1, . . . , In ∪ Jn)) ⊆ 〈u〉.

Assume that U ⊆ 〈u〉 but that there is some e ∈ V − 〈u〉. Then, since
p(x) = q(x,W1, . . . ,Wk) ∪ Z we get Z ⊆ U ⊆ 〈u〉, so since

e ∈ V − Z = q(f(I1 ∪ J1, . . . , In ∪ Jn),W1, . . . ,Wk)− Z,
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we get that e ∈ q(f(I1 ∪ J1, . . . , In ∪ Jn),W1, . . . ,Wk). We can reorder
the variables of f so that there are elements si ∈ Ii (1 ≤ i ≤ j),
ti ∈ Ji (j + 1 ≤ i ≤ n), wi ∈ Wi (1 ≤ i ≤ k) such that

e = q(f(s1, . . . , sj, tj+1, . . . , tn), w1, . . . , wk) = q(f(s, t),w) .

For each i between 1 and j we use the facts that si ∈ Ii and (Ii, Ji) ∈ S
to choose (s′i, t

′′
i ) ∈ (Ii×Ji)∩T with s′i w si, and similarly for i between

j + 1 and n we can choose (t′i, s
′′
i ) ∈ (Ji × Ii) ∩ T with t′i w ti. We use

these elements to form tuples s′ = (s′1, . . . , s
′
j), s

′′ = (s′′j+1, . . . , s
′′
n), t′

and t′′. Since s′ and t′′ are T -related coordinatewise, and the same is
true for s′′ and t′, we have

[
q(f(t′′, s′′),w) q(f(t′′, t′),w)
q(f(s′, s′′),w) q(f(s′, t′),w)

]
=

[
p q
r s

]
∈M(T, T )

with q, r ∈ U ⊆ 〈u〉. Since we have assumed that T rectangulates itself
with respect to w, and u w q, r, we must have

u w s = q(f(s′, t′),w) w q(f(s, t),w) = e,

which is contrary to our choice of e. This proves the first sentence of the
claim. The second sentence follows from the first by taking U = 〈u〉,
V = 〈v〉, and using the fact that w is a partial order.

The relation S/θ = {(I/θ, J/θ) ∈ (B/θ)2 | (I, J) ∈ S} is a tolerance
on B/θ, hence a subalgebra of B/θ ×B/θ.

Claim 5.11. The function ∪ : S/θ → B/θ is a homomorphism.

We must show that if (Ii/θ, Ji/θ) ∈ S/θ and f ∈ L, then in B/θ
we have

f(I1/θ ∪ J1/θ, . . . , Ik/θ ∪ Jk/θ)
= f(I1/θ, . . . , Ik/θ) ∪ f(J1/θ, . . . , Jk/θ).

Equivalently, we must show that if (Ii, Ji) ∈ S and f ∈ L, then in B
we have

f(I1 ∪ J1, . . . , Ik ∪ Jk) ≡θ f(I1, . . . , Ik) ∪ f(J1, . . . , Jk).

This is immediate from the definition of θ.

Claims 5.8 and 5.10 prove that the composite x 7→ 〈x〉 7→ 〈x〉/θ is
an embedding: A → B → B/θ. We identify A with its image under
this homomorphism.

Let C be the set of all algebras C ∈ V(A) that are intermediate
extensions: A ≤ C ≤ B/θ. This set contains A, so it is nonempty,
and it is closed under unions of chains. Therefore there is an algebra
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Â ∈ C which is maximal among intermediate extensions that belong

to V(A). Let T̂ = S/θ| bA be the restriction of S/θ to Â.

Claim 5.12. T̂ is a tolerance on Â, and conditions 2(i)–(iv) hold

for T̂ and Â.

T̂ is the restriction of the tolerance S/θ on B/θ to Â, so it is a

tolerance on Â. It is a consequence of Claim 5.9 that T ⊆ T̂ |A. What

we have left to show is that T̂ is rectangular, and supports a compatible
semilattice operation. We show the latter first.

Claim 5.11 proves that ∪ : S/θ → B/θ is a homomorphism. This

homomorphism can be restricted to T̂ . The image ∪(T̂ ) of the re-

stricted homomorphism contains Â, since T̂ is reflexive and a ∪ a = a

for all a ∈ Â. The image ∪(T̂ ) is a quotient of T̂ , and T̂ is a subalgebra

of Â × Â ∈ V(A), so the image is in V(A). The maximality of Â

prevents it from being properly contained in ∪(T̂ ), so ∪(T̂ ) = Â. This

shows that ∪ is a homomorphism from T̂ to Â.

Let D be a T̂ -block. If a, b, c ∈ D, then (a, c), (b, c) ∈ T̂ ⊆ S/θ so,
since S/θ is a tolerance of 〈B;∪〉/θ,

(a ∪ b, c) = (a, c) ∪ (b, c) ∈ S/θ| bA = T̂ .

This shows that a ∪ b is T̂ -related to any c ∈ D, so a ∪ b ∈ D by the

fact that D is a block. Since ∪ is a homomorphism from T̂ to Â that
it is the restriction of a semilattice operation on B/θ, and since each

T̂ -block is closed under ∪, it follows that ∪ is a compatible semilattice

operation on T̂ .

Now we prove that T̂ is rectangular. To check this we need a com-

patible partial order on Â. We choose it to be the restriction of the
∪-semilattice order on B/θ, which we denote by � and define by

a� b ⇐⇒ a = a ∪ b.
We have already observed that the operations of B/θ are monotone

with respect to the semilattice order, and this fact is inherited by Â,
hence � is a compatible partial order. To see that R(T̂ , T̂ ;�) holds,

choose M ∈M(T̂ , T̂ ),

M =

[
p(a,u) p(a,v)
p(b,u) p(b,v)

]
=

[
p q
r s

]
,

with u � q, r for some u ∈ Â. All four elements of this matrix are

T̂ -related, so

u� u∪ u� q ∪ r = p(a,v)∪ p(b,u) = p(a∪ b,v ∪ u)� p(b,v) = s.
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Thus, u� q, r implies u� s, as required. This completes the proof of
the claim, and also of the theorem. �

It is worth recording that the proof produces from A and T two

algebras of interest: Â and B/θ. The properties of the two algebras

are roughly the same with respect to rectangulation, but Â is in the
variety generated by A while B/θ may not be. On the other hand, the
compatible semilattice operation that we constructed is only a partial

operation on Â (it is defined only on T̂ -blocks), while it is a total
operation on B/θ and the semilattice order is a compatible partial
order of B/θ.

5.2. Rectangular Tolerances and Join Terms

We introduced join terms in Section 3.2, but did not investigate
their properties. It is now important that we do so. In this section we
explore the structure of rectangular tolerances on algebras in varieties
with a join term. For such tolerances we prove that the representation

given in Theorem 5.7 is simpler in that one may take Â = A and

T̂ = T . We then describe connections with the relations ≥T and ∼T
that were introduced in Definition 3.14

Theorem 5.13. Let V be a variety with a join term +, and let T
be a tolerance on an algebra A ∈ V.

(1) If B is a T -block and w ≥B u and w ≥B v, then w ≥B u+ v.
Similarly, if w ≥T u and w ≥T v, then w ≥T u+ v.

(2) If B is a T -block, then ≥B is a join semilattice ordering on B
modulo ∼B, and + is the join with respect to that ordering.

(3) If B is a T -block containing all entries of

[
a b
c d

]
∈M(T, T ) ,

then a+ d ∼B b+ c.
(4) If (q, r; s) is a (T, T )-triple, then q + r ≥T s.
(5) If p is a polynomial of A and u T v, then

p(u + v) ∼T p(u) + p(v) .

Proof. From w ≥B u and w ≥B v it follows that w = w+w ≥B
u + v, since + is idempotent and ≥B is compatible with idempotent
polynomials (Lemma 3.15 (1)). The statement about ≥T follows in the
same way from Lemma 3.15 (2).

If B is a T -block, then B is closed under + since + is idempotent.
From Corollary 3.21, u + v ≥B u, v, while item (1) proves conversely
that if w ≥B u, v, then w ≥B u+ v. Thus ≥B is indeed a semilattice
order modulo ∼B on B, and + is the join with respect to this order.
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For item (3), Lemma 3.17 (3) proves that b+c ≥B (b+d)+(a+c).
But from Corollary 3.21 we have b + d ≥B d and a+ c ≥B a, so

b+ c ≥B (b + d) + (a + c) ≥B d+ a .

Since ≥B is transitive on B, we have b+ c ≥B d+a. If we interchange
the two rows of this T, T -matrix, we derive conversely that d + a ≥B
b+c, hence that b+c ∼B d+a. It follows from part (2) that d+a ∼B
a + d, so from the transitivity of ∼B on B we get a + d ∼B b + c, as
claimed.

For (4), if (q, r; s) is a (T, T )-triple, then its entries belong to a
T, T -matrix. All four entries of any T, T -matrix are pairwise T -related,
hence a block B exists that contains all four entries. Applying item (3)
to this block we obtain q + r ∼B p + s for some p ∈ B, hence from
item (1) it follows that q + r ≥B s. This proves q + r ≥T s.

We first prove item (5) in the case where p = f is a basic operation
of A. Choose T -blocks Bi such that ui, vi ∈ Bi for all i, and choose a
T -block B such that f(B1, . . . , Bn) ⊆ B. According to part (2) of this
theorem we have

(5.4) ui + vi ∼Bi vi + ui

for all i. Now consider the T, T -matrix
[
f(u + u) f(u + v)
f(v + u) f(v + v)

]
.

All entries lie in B, so from part (3) we get that

f(u + u) + f(v + v) ∼B f(u + v) + f(v + u) .

The left hand side is f(u) + f(v), since + is idempotent. The right
side is ∼B-related to f(u + v) since, by (5.4), Claim 3.16 and the
idempotence of + we have

f(u + v) + f(v + u) ∼B f(u + v) + f(u + v) = f(u + v) .

Since ∼B is transitive on B we get f(u) + f(v) ∼B f(u + v), hence
f(u) + f(v) ∼T f(u + v).

Now we prove (5) for polynomials. Consider the relation ρ ⊆ A3

consisting of all triples (u, v, w) for which there is a T -block B such
that u, v, w ∈ B and u+ v ∼B w. It follows from the fact that item (5)
is true when f is a basic operation, together with Claim 3.16 and the
transitivity of ∼B′ on B′ for any block B′, that ρ is compatible with the
basic operations of A. It is compatible with all constant operations on
A because + is idempotent. Thus ρ is compatible with all polynomial
operations. Since ρ contains all triples of the form (u, v, u + v), it
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therefore contains (p(u), p(v), p(u + v)), establishing that p(u + v) ∼T
p(u) + p(v). �

We can prove more if T is rectangular.

Theorem 5.14. Let V be a variety with a join term +, and let T
be a tolerance on an algebra A ∈ V. If w is a compatible partial order
of A for which R(T, T ;w) holds, then the following are true.

(1) The relation ∼T is the equality relation on A.
(2) ≥T equals w ∩T , and also equals {(u, v) ∈ T | u = u+ v}.
(3) If

[
a b
c d

]
∈M(T, T ) , then a+ d = b + c.

(4) If f is a polynomial of A and u T v, then

f(u + v) = f(u) + f(v) .

(5) +: T → A is the unique compatible semilattice operation sup-
ported by T .

Proof. If (r, s) is a (T, T ; 0)-pair, then there is a matrix
[
p q
r s

]
∈M(T, T )

with q = r. Since r w r and r w q (= r), we get r w s because
R(T, T ;w) holds. This shows that the relation w contains all (T, T ; 0)-
pairs, hence contains ≥T . Therefore, the reflexive relation ∼T is con-
tained in the intersection of w and its converse, which forces ∼T to be
the equality relation. This proves item (1), and together with Theo-
rem 5.13 (3) and (5) also proves items (3) and (4).

We will prove that ≥T is contained in w ∩T , which is contained
in {(u, v) ∈ T | u = u + v}, which is contained in ≥T . It follows
from Definition 3.14 that ≥T is contained in T , and it follows from
the argument of the previous paragraph that ≥T is contained in w,
so ≥T is contained in w ∩T . Next, choose any pair (u, v) in w ∩T .
Since w is reflexive and compatible, and since u w v, we get that
u = u + u w u + v. But u + v ≥T u, according to the definition of a
join term, so u + v w u by the argument of the first paragraph. This
shows that both (u, u+ v) and (u+ v, u) belong to the partial order w,
so u = u + v. Hence w ∩T is contained in {(u, v) ∈ T | u = u + v}.
Finally, choose any (u, v) ∈ T such that u = u + v. If B is a T -
block containing u and v, then u = u + v ≥B v, since ≥B is the join
order for + on B (Theorem 5.13 (2)). Therefore u ≥T v, proving that
{(u, v) ∈ T | u = u+ v} is contained in ≥T . This completes the proof
of item (2).
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For item (5), it follows from Theorem 5.13 (2) and part (1) of this
corollary that + is a semilattice operation on the blocks of T . The
property from item (4) of this corollary, in the cases where f is a
basic operation of A, is exactly the property that +: T → A is a
homomorphism. Thus + is a compatible semilattice operation on T .
If s : T → A is another compatible semilattice operation, then using
the commutativity and idempotence of s and +, and the fact that
s : T → A is a homomorphism, and that + is a term, we have for any
(u, v) ∈ T

s(u, v) = s(u, v) + s(v, u)
= s(u+ v, v + u)
= s(u+ v, u+ v)
= u+ v.

Thus + is unique. �
Corollary 5.15. Let V be a variety. The following are equivalent.

(1) V has no member with a nonzero congruence that is simulta-
neously rectangular and abelian.

(2) V has no member with a nonzero tolerance that is simultane-
ously rectangular and abelian.

(3) V satisfies a nontrivial idempotent Maltsev condition.

Proof. Since tolerances are congruences, (2)=⇒(1).
A strongly abelian congruence is both rectangular and abelian, so if

(1) holds, then V omits strongly abelian abelian congruences. Hence V
satisfies a nontrivial idempotent Maltsev condition, according to The-
orem 3.12, showing that (1)=⇒(3).

Finally, if V satisfies a nontrivial idempotent Maltsev condition,
then it has a join term, +. Suppose that A ∈ V has a tolerance T that
is rectangular and abelian. By Theorem 5.14 (5), + is a semilattice
operation on T -blocks. Therefore, if (a, b) ∈ T and a ≥ b in the
semilattice order, then

[
a a
a b

]
=

[
a + a a+ b
b + a b+ b

]
∈ M(T, T ) .

But since T is also abelian, the equality in the first row of this matrix
implies equality in the second row. Hence T = 0, and (3)=⇒(2). �

One can use tame congruence theory, [34], to prove that a finite
simple algebra has a nontrivial tolerance that is (a) simultaneously
rectangular and abelian if and only if it has one that is (b) strongly
rectangular if and only if it has one that is (c) strongly abelian. So
perhaps it is not too surprising that the varieties that omit tolerances
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of type (a) are the same as those that omit type (b) or (c). However,
(a), (b) and (c) are truly different properties of tolerances, even for
finite algebras, as we explain in the next example.

Example 5.16. This example is an extension of Example 3.2. As in
that example, let X be a set and letM⊆ X2×2 be a set of 2×2 matrices
with entries in X. Define A(M) as in Example 3.2. Suppose that �
is a quasiorder defined on the set X such that whenever M =

[
p q
r s

]

belongs to M, then

u� q & u� r ⇐⇒ u� s & u� p

for any u ∈ X. Let w be the least extension of � to a quasiorder
on A = X ∪ Y ∪ {0} (namely, w is the union of � with the equality
relation on A). Then w is a compatible quasiorder of A(M), and it
is clear that R(R, S;w) and R(T, T ;w) both hold (since for u 6= v we
have u w v if and only if u � v). Thus, we are again in the situation
that we may ignore algebraic considerations and think set-theoretically
when considering relationships between rectangulation and the term
conditions introduced earlier.

To see, for example, that there is a finite algebra with a tolerance
that is rectangular and abelian but not strongly rectangular (hence not
strongly abelian), it is entirely sufficient to write down the single ma-

trix M =

[
1 3
3 2

]
. Then, forM = {M}, and A(M) and T defined as

in Example 3.2, the set of nontrivial T, T -matrices are just those that
can be obtained from M by permuting its entries by some combination
of row or column interchanges or transposes. As a T, T -matrix, M for-
mally conflicts with SR(T, T ; 0). But it does not formally conflict with
C(T, T ; 0) or R(T, T ;�) where � is the partial order on X generated
by the pairs (3, 1) and (3, 2). Therefore, on the algebra A(M), the
tolerance T is rectangular and abelian but not strongly rectangular.

The construction of Example 5.16 can be used to show that it is
possible for the transitive closure of the (T, T ; 0)-pairs to be a partial
order even when T is not rectangular. For example, this occurs when

M =

{[
1 3
3 2

]
,

[
1 4
4 2

]}
.

Generalizations of this example show that the construction of the rect-
angular commutator of two tolerances can be arbitrarily complicated
in general. The situation is better in varieties with join terms.
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Theorem 5.17. Let V be a variety with a join term +, and let T
be a tolerance on an algebra A ∈ V. Let ρ be any congruence on A
that contains ∼T , and let C = A/ρ and S = T/ρ.

(1) If a1 ≥S a2 ≥S · · · ≥S an ≥S a1 in C, then a1 = a2 = · · · = an.
(2) If w is the transitive closure of ≥S, then w is a partial order

of C whose restriction to any S-block agrees with ≥S.
(3) R(S, S;w) holds.
(4) The transitive closure of ∼T is [T, T ]R.

Proof. First we prove (1). We may assume that all (ai, ai+1) (with
the understanding that n+1 = 1) are (S, S; 0)-pairs. Now choose n ≥ 2
minimal among such cycles for which the statement is false. We argue
that a1 + a2 = a2 + a1 = a1. As (a1, a2) is an (S, S; 0)-pair, there exists
a (T, T )-matrix [

a b
c d

]

such that b/ρ = c/ρ = a1 and d/ρ = a2. Choose a T -block B containing
these four elements. By Theorem 5.13 we have that b+c ∼B a+d, and
that + is a semilattice operation on B modulo ∼B, which implies that
(b+ c) + d ∼B d+ (b+ c) ∼B b+ c. The relation ∼B is contained in ρ,
and therefore in A/ρ we have (a1 + a1) + a2 = a2 + (a1 + a1) = a1 + a1.
But + is idempotent, so a1 + a2 = a2 + a1 = a1. A similar argument
shows that ai + ai+1 = ai+1 + ai = ai for all i.

Consider

a1 + a2 ≥S a2 + a3 ≥S a2 + a4 ≥S · · · ≥S a2 + an ≥S a2 + a1 .

This is a cycle of length n − 1. We show that every link in it is
an (S, S; 0)-pair. Indeed, the sum of two (S, S)-matrices is also an
(S, S)-matrix, hence the sum of two (S, S)-triples is an (S, S)-triple as
well. Now (a1, a1; a2) and (a2, a2; a3) are (S, S)-triples, and so their
sum (a1 + a2, a1 + a2; a2 + a3) is an (S, S)-triple, proving that the first
link is indeed an (S, S; 0)-pair. Similarly, (a2, a2; a2) and (ai, ai; ai+1)
are (S, S)-triples, and their sum shows that all the other links in the
chain are (S, S; 0)-pairs, too.

The minimality of n then forces this chain to be trivial, that is, all
links are equal. Thus a1 +a2 = a2 +a3. But we know that a1 +a2 = a1

and a2 + a3 = a2. Therefore a1 = a2. This contradicts the minimality
of n in the original chain. This argument works for every n > 1, and
so (1) is proved.

To prove (2) suppose that u w v and v w u. Then there is a ≥S-
chain from u to v, and from v to u. Thus the statement in (1) shows
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that u = v. Therefore ≥ is indeed a partial order. To prove the other
statement, suppose that

b1 ≥S b2 ≥S b3 ≥S · · · ≥S bn ,
where (b1, bn) ∈ S. Consider

(5.5) b1 + b1 ≥S b2 + b1 ≥S b3 + b1 ≥S · · · ≥S bn + b1 .

Here bn + b1 ≥S b1 = b1 + b1 by the properties of +, since bn and b1

are S-related. Hence (5.5) is a cycle, which must be trivial by (1).
Therefore b1 = bn + b1 ≥S bn, proving (2).

Now we prove that R(S, S;w) holds. Suppose that
[
a b
c d

]
∈M(S, S) ,

and u ∈ C satisfies that u w b and u w c. If B is an S-block that
contains these four elements, then Theorem 5.13 (3) guarantees that
b + c ∼B a + d. But the relation ∼B is the intersection of ≥B and its
converse, the relation ≥B is contained in ≥S, and ≥S is antisymmetric
by item (2). Thus ∼B is equality on B, yielding b+ c = a+ d. As + is
idempotent and w is compatible, we get that u = u+u w b+c = a+d.
But a + d ≥S d by the definition of a join term, so u w a + d w d,
proving that R(S, S;w) holds.

For item (4), let ρ be the transitive closure of ∼T in A. Since ∼T is
a tolerance, its transitive closure ρ is a congruence. Now suppose that
� is the least compatible partial order on A such that R(T, T ;�)
holds. If [

p q
r s

]
∈M(T, T ) ,

and q = r, then r � r and r � q(= r), so r � s. Thus � contains all
(T, T ; 0)-pairs, and therefore contains ≥T . According to Definition 5.3,
[T, T ]R is the intersection of� and its converse, hence [T, T ]R contains
the intersection of ≥T and its converse, hence contains ∼T . Since ρ is
the least congruence containing ∼T , we get ρ ≤ [T, T ]R.

On the other hand, according to Theorem 5.4, [T, T ]R is the least
congruence δ for which T/δ is a rectangular tolerance of A/δ. By
items (2) and (3) of this theorem, ρ is a congruence with this property.
Therefore [T, T ]R = ρ. �

The following consequence of Theorem 5.17 is worth stating sepa-
rately.

Corollary 5.18. Let V be a variety with a join term, and let T
be a tolerance on some A ∈ V. T is rectangular if and only if ∼T is
the equality relation.
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Proof. If T is rectangular, then ∼T is the equality relation ac-
cording to Theorem 5.14 (1). On the other hand, if ∼T is the equality
relation, then Theorem 5.17 (4) guarantees that [T, T ]R = 0. �

Corollary 5.18 implies the following characterization of rectangular
tolerances in varieties with join terms, which is a refinement of Theo-
rem 5.6.

Corollary 5.19. Let V be a variety with a join term +, and let
T be a tolerance on an algebra A ∈ V. T is rectangular if and only if
+ is a compatible semilattice operation on T .

Proof. If T is rectangular, then + is a compatible semilattice
operation on T by Theorem 5.14 (5). Conversely, suppose that + is a
compatible semilattice operation on T . If (r, s) is a (T, T ; 0)-pair, then
there is a matrix[

p q
r s

]
=

[
f(a,u) f(a,v)
f(b,u) f(b,v)

]
∈M(T, T )

with q = r. In this situation

q + r = f(a + b,v + u) = p+ s ,

and all elements p, q, r, s, q+r and p+s lie in a single T -block. Therefore
r = q + r = p + s ≥ s in the semilattice order on that block. This
means that the equation r + s = r holds, which is a property that
is independent of the block that we are considering. Thus if (r, s)
is a (T, T ; 0)-pair, then r ≥ s in the semilattice order on any block
containing r and s. This conclusion implies that on any T -block the
relation ≥T is contained in the semilattice order, and therefore that ∼T
is the equality relation. Hence T is rectangular by Corollary 5.18. �

The following corollary will be used in Section 9.2.

Corollary 5.20. Let V be a variety with a join term +, and let T
be a rectangular tolerance on an algebra A ∈ V. Assume that a and b
are distinct T -related elements of A. If ρ is a congruence on A that is
maximal with respect to (a, b) /∈ ρ, then T/ρ is a nontrivial rectangular
tolerance on the subdirectly irreducible algebra A/ρ.

Proof. If T is rectangular, then ∼T is the equality relation ac-
cording to Theorem 5.14 (1). Therefore every congruence ρ on A
contains ∼T . From Theorem 5.17, T/ρ is a rectangular congruence
of A/ρ for any ρ. Choosing ρ as described in the statement of this
corollary guarantees that T/ρ is nontrivial and that A/ρ is subdirectly
irreducible. �
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5.3. Varieties Omitting Rectangular Tolerances

The purposes of this section are to show that a variety omits rect-
angular tolerances if and only if it omits rectangular congruences, and
then to give three different Maltsev characterizations of the class of
varieties with these properties.

Lemma 5.21. Let V be a variety with a join term and let F =
FV(x, y) be the free V-algebra generated by {x, y}. Let T = TgF(x, y),
let θ = CgF(T ), and let B = x/θ. The relations ≥θ and ≥T have the
same restriction to B.

Proof. It follows from Lemma 3.15 (4) that ≥T |B = tr.cl.(S|B),
where S is the set of (T, T ; 0)-pairs of F, and that ≥θ |B = tr.cl.(S|B),
where S is the (larger) set of (θ, θ; 0)-pairs of F. Thus, it is enough to
show that if (r, s) ∈ B2 is a (θ, θ; 0)-pair, then (r, s) is in the transitive
closure of the set of (T, T ; 0)-pairs. So choose a θ, θ-matrix of the form

[
p r
r s

]
=

[
t(a, c) t(a,d)
t(b, c) t(b,d)

]
.

Let h : F → F be the endomorphism determined by x 7→ x, y 7→ x.
The conditions a ≡θ b and c ≡θ d are equivalent to h(a) = h(b) and
h(c) = h(d). As in the proof of Lemma 3.7, consider the following 4×4
matrix:




t(a, c)) t(a, h(c)) = t(a, h(d)) t(a,d)
t(h(a), c) t(h(a), h(c)) = t(h(a), h(d)) t(h(a),d)
‖ ‖ ‖ ‖

t(h(b), c) t(h(b), h(c)) = t(h(b), h(d)) t(h(b),d)
t(b, c)) t(b, h(c)) = t(b, h(d)) t(b,d)



.

Recall from that earlier proof that the four elements in the middle are
equal to x and that the four 2 × 2 matrices in the corners are T, T -
matrices. All elements of this 4×4 matrix are contained in B, because
all elements are θ-related, r, s ∈ B by assumption, and B is a block
of θ.

Proceeding as we did in the proof of Lemma 3.7, let k : F → F be
the endomorphism of F that sends x to y and y to y. Consider the
analogous 4 × 4 matrix with respect to k, and apply r(x, y) to these
two matrices, the first matrix in the first argument, the second matrix
in the second argument. As before, we get a 4× 4 matrix which, after
deleting one of the doubled middle columns and one of the doubled

   
Callout
extra )

   
Line



5.3. VARIETIES OMITTING RECTANGULAR TOLERANCES 105

middle rows, is a 3× 3 matrix of the form:

J =



p i r
j r `
r m s


 .

The four 2× 2 matrices in the corners of the 3× 3 matrix J are T, T -
matrices. From the matrix in the upper right corner we get that r ≥T `.
From the matrix in the lower left corner we get that r ≥T m. From
the matrix in the lower right corner we get, using Theorem 5.13 (4),
that ` + m ≥T s. But + is idempotent, ≥T is compatible, and ≥T is
transitive on B, so we see that r = r + r ≥T `+m ≥T s. �

Theorem 5.22. Let V be a variety. The following are equivalent.

(1) No member of V has a nontrivial rectangular congruence.
(2) No member of V has a nontrivial rectangular tolerance.

Proof. Clearly (2)=⇒(1), since congruences are tolerances. The
same type of argument as that used in the proof of Lemma 3.5 shows
that to prove the converse it is enough to show that

(x, y) ∈ [θ, θ]R =⇒ (x, y) ∈ [T, T ]R

where θ = CgF(x, y) and T = TgF(x, y) are the congruence and toler-
ance generated by (x, y) in the free algebra F = FV(x, y). So assume
that (x, y) ∈ [θ, θ]R. This assumption, which is equivalent to the as-
sumption that V has no member with a rectangular congruence, implies
that V has no algebra with a strongly rectangular congruence. Theo-
rems 3.20 and 3.22 now guarantee that V has a join term. This puts
us into position to use Theorem 5.17. By part (4) of that theorem,
the condition that (x, y) ∈ [θ, θ]R means that (x, y) lies in the tran-
sitive closure of ∼θ. But according to Lemma 3.15 (5), the fact that
θ is a congruence implies that ∼θ is transitive. Therefore x ∼θ y.
This implies that x ≥θ y and y ≥θ x, so by Lemma 5.21 we get that
x ≥T y and y ≥T x. Since B = x/θ is the unique T -block containing
x and y we have x ≥B y and y ≥B x; i.e., x ∼B y and hence x ∼T y.
Theorem 5.17 (4) now guarantees that (x, y) ∈ [T, T ]R. �

The proof of Theorem 5.22 shows that a variety V contains no mem-
ber with a rectangular tolerance or congruence if and only if x ∼T y
in F = FV(x, y) for T = TgF(x, y). This property is easily seen to be
expressible by an idempotent Maltsev condition, which we record here.

Theorem 5.23. Let V be a variety. The following are equivalent.

(1) No member of V has a nontrivial rectangular tolerance.
(2) x ∼T y in F = FV(x, y) for T = TgF(x, y).
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(3) There exists an m ≥ 1, and sixary terms f1, . . . , fm such that
V satisfies the following identities:
(i) x ≈ f1(y, y, x, x, x, y),

(ii) fm(y, x, x, x, y, y) ≈ y,
(iii) fi(x, x, x, y, y, y) ≈ fi(y, y, x, x, x, y), 1 ≤ i ≤ m
(iv) fi(y, x, x, x, y, y) ≈ fi+1(y, y, x, x, x, y), 1 ≤ i ≤ m− 1.

(4) For any algebra A ∈ V, tolerance S on A, and (a, b) ∈ S,
a ≥S b holds.

(5) For any algebra A ∈ V, tolerance S on A, and (a, b) ∈ S,
a ∼S b holds.

Proof. The proof of Theorem 5.22 shows that (1) and (2) are
equivalent.

If (2) holds, then x ≥T y in F, so according to Lemma 3.19 there
exists a sequence f1, . . . , fm of sixary terms satisfying the identities
in (3).

Now suppose that (3) holds. Choose A ∈ V, a tolerance S on A,
an S-block B and a, b ∈ B. SInce B is a block it is closed under all
the idempotent terms that appear in item (3). By substituting a and b
for x and y in the identities of (3) we obtain elements of S witnessing
that a ≥B b. Namely, the fact that (a, b) ∈ S implies that for each i
the matrix

[
pi qi
ri si

]
=

[
fi(a, b, a, b, a, b) fi(a, a, a, b, b, b)
fi(b, b, a, a, a, b) fi(b, a, a, a, b, b)

]

is in M(S, S). Identities of type (iii) imply that qi = ri, so each (rr, si)
is an (S, S; 0) pair. The other identities impliy that the sequence of
these pairs is a connected chain from a to b. Thus a ≥S b, and item
(4) is established.

The argument of the previous paragraph showed that a ≥B b for
some S-block B, and a similar one shows that b ≥B a for the same
block B. Hence a ∼B , which implies that a ∼S b. This establishes
item (5). �

Our next task will be to connect the foregoing with the Hobby–
McKenzie term. First we need a lemma.

Lemma 5.24. If C is a nontrivial idempotent algebra with a com-
patible semilattice term, then there is an algebra D that is a homo-
momorphic image of a subalgebra of C and is term equivalent to the
2-element semilattice.
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Proof. Denote the semilattice operation by +, and call it join.
Since the semilattice order is equationally definable by

x ≥ y ⇐⇒ x = x + y ,

and + is compatible, it follows that the semilattice order is a compatible
relation. As C is not a singleton, there exist two distinct elements
0 < 1 of C. If c1, . . . , ck belong to the interval [0, 1] (with respect to
the semilattice ordering), and f is a term operation of C, then

1 = f(1, . . . , 1) ≥ f(c1, . . . , ck) ≥ f(0, . . . , 0) = 0

by the idempotence of f and the compatibility of ≥. Thus [0, 1] is a
nontrivial subalgebra of C. Replacing C by this subalgebra, we may
henceforth assume that C has least and largest elements 0 and 1.

If f is a k-ary term operation of C, then since + is compatible the
operation f must commute with x1 + · · ·+ xk on the matrix




x1 0 · · · 0
0 x2 · · · 0
...

...
...

0 0 · · · xk


 .

This says exactly that f(x1, . . . , xk) = f1(x1) + · · · + fk(xk) where
fi(xi) := f(0, . . . , 0, xi, 0 . . . , 0), with xi in the i-th position. As f is
idempotent, we have that

f1(x) + · · ·+ fn(x) = x

for every x. In particular, fi(x) ≤ x for every x. The functions fi
are of course +-endomorphisms, too, since f is compatible with + and
0 + 0 = 0.

Choose a maximal semilattice ideal I of C that does not contain 1.
Let F = C − I be the complementary filter. Let θ be the equivalence
relation on C whose classes are I and F . We claim that θ is a congru-
ence of C, and that C/θ is term equivalent to a semilattice. To show
this, represent an arbitrarily chosen term f as a sum of unary polyno-
mials as described in the previous paragraph. The condition fi(x) ≤ x
implies that fi(I) ⊆ I. We prove that either fi(F ) ⊆ F , or fi(F ) ⊆ I.
Assume that fi(F ) 6⊆ F , and choose u ∈ F so that fi(u) ∈ I. By the
maximality of I, there exists an element a ∈ I such that a + u = 1.
Since fi is a +-endomorphism we have fi(1) = fi(a) + fi(u) ∈ I. This
shows that if fi(u) ∈ I, then fi(1) ∈ I, hence fi(C) ⊆ I. Consequently
each fi preserves θ. Since + also preserves θ, it follows that f preserves
it, so θ is a congruence of C.
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The quotient D = C/θ is a 2-element idempotent algebra with a
compatible semilattice term +. Any such algebra is term equivalent to
the 2-element semilattice, as we now show. Suppose that the elements
ofD are denoted 0 and 1, and that 0 < 1 in the +-order. As above, each
term operation of D may be represented as f(x1, . . . , xk) = f1(x1) +
· · ·+ fk(xk) where each fi is a decreasing +-endomorphism. But since
D = {0, 1} this forces each fi to be the identity function or the constant
function with value 0. If J ⊆ {1, . . . , k} is the set of indices j such that
fj is the identity, then J 6= ∅, since f is idempotent, and f(x1, . . . , xk) =∑

J xj. Hence f equals a semilattice term operation. �

Now we are in position to give a second Maltsev characterization
of the class of varieties that omit rectangular tolerances.

Theorem 5.25. Let V be a variety. The following are equivalent.

(1) No member of V has a nontrivial rectangular tolerance.
(2) V satisfies an idempotent (linear) Maltsev condition that fails

in the variety of semilattices.
(3) V has a Hobby–McKenzie term.

Proof. The equivalence of (2) and (3) is Theorem 2.16.
To show that (1)=⇒(2) we argue that the the idempotent linear

Maltsev condition from Theorem 5.23 (3) fails in the variety of semi-
lattices. We give two proofs of this.

First, the Maltsev condition from Theorem 5.23 holds only in vari-
eties omitting rectangular congruences. A calculation shows that the
largest congruence on the 2-element semilattice is rectangular. There-
fore the Maltsev conditon fails in the variety of semilattices.

For the second proof, observe that if f1(x1, . . . , x6) is a semilattice
term, then identity (i) of Theorem 5.23 (3), x ≈ f1(y, y, x, x, x, y),
implies that f1 does not involve the variables x1, x2 or x6. (Otherwise,
by putting the absorbing element of the 2-element semilattice in for
these variables and the nonabsorbing element for the other variables
one obtains the contradiction that these two elements are equal.) This,
together with the first instance of identity (iii), f1(x, x, x, y, y, y) ≈
f1(y, y, x, x, x, y) (≈ x), shows that f1 does not involve x4, x5 or x6

either. Therefore, by idempotence, f1(x1, . . . , x6) ≈ x3. This argument
propagates down the chain of fi’s via identity (iv), showing that each
term satisfies fi(x1, . . . , x6) ≈ x3. Identity (ii) then reduces to x ≈ y,
which fails in the variety of semilattices.

Now we prove (2)=⇒(1). Assume that V satisfies a (not necessar-
ily linear) idempotent Maltsev condition, called W , that fails in the
variety of semilattices. Let T = Tg(x, y) be the tolerance generated
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by (x, y) on the free algebra F = FV(x, y), and let B be the T -block
of idempotent binary terms. B is closed under all idempotent terms
of V, so let B be the algebra with universe B and basic operations all
idempotent terms of V. B is an idempotent algebra that satisfies the
idempotent Maltsev condition W . The relation ∼T restricted to B is
a congruence θ of B.

Since the Maltsev condition W is nontrivial, the variety generated
by B has a join term +. By Theorem 5.13 (2) and (5), + is a compatible
semilattice term of the idempotent algebra C = B/θ. If C is nontrivial,
then Lemma 5.24 guarantees that some homomorphic image D of some
subalgebra C is term equivalent to the 2-element semilattice. The
Maltsev condition W is satisfied by C, hence by D, hence by the variety
of semilattices. But we have assumed the contrary, so we conclude that
C is trivial. This proves that B is a single ∼T class, and therefore that
x ∼T y in FV(x, y). According to Theorem 5.23, this means that V
contains no algebra with a nontrivial rectangular tolerance. �

In the preceding proof the implication (3)=⇒(1) is verified indi-
rectly. Before proceeding, we would like to describe a direct proof
of this implication. Suppose that f(x1, . . . , xn) is a Hobby–McKenzie
term for V. Recall from Chapter 2 that for a subset U ⊆ N :=
{1, . . . , n} the expression fU(x, y) denotes the term obtained from f
by substituting x for xi if i ∈ U and y for xi otherwise. The statement
that f is a Hobby–McKenzie term for V is precisely the statement
that f is idempotent and for any nonempty subset U ⊆ N there exist
subsets V,W ⊆ N with U ⊆ V , U 6⊆ W and V |= fV (x, y) ≈ fW (x, y).

As usual, let F = FV(x, y), T = TgF(x, y), and B be the T -block of
idempotent binary terms. Our aim is to prove that x ∼T y using the
equations of the Hobby–McKenzie term. Recall that the restriction of
∼T to B is transitive. Let U ⊆ N be minimal under inclusion with
respect to the property that fU(x, x + y) ∼T x. (Such a set U exists,
since fN(x, x+y) = x ∼T x.) If U is not empty, then there exist V,W ⊆
N such that U ⊆ V but U 6⊆ W , and fV (x, x+y) = fW (x, x+y). Hence
by Theorem 5.13,

(5.6) fU(x, x+ y) + fW (x, x + y) ∼T fU ∩W (x, x + y) ,

and

(5.7) fU(x, x+ y) + fV (x, x+ y) ∼T fU ∩V (x, x+ y) = fU (x, x+ y) .

Since fV (x, x+ y) = fW (x, x+ y), the left hand sides of lines (5.6) and
(5.7) are the same. Therefore

fU ∩W (x, x + y) ∼T fU(x, x + y) ∼T x .
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This contradicts the minimality of U unless U = ∅, which leads to the
conclusion that x ∼T f∅(x, x+y) = x+y. A symmetric argument shows
that y ∼T x+y, and therefore x ∼T y. At this point, Theorem 5.23 may
be invoked to deduce that no algebra in V has a rectangular tolerance.

We turn to our third Maltsev characterization of the class of va-
rieties that omit rectangular tolerances. This new Maltsev condition
involves four variable terms, and somewhat resembles Alan Day’s Mal-
tsev condition characterizing the class of congruence modular varieties
(cf. [8]).

Definition 5.26. Let A be an algebra. If Con(A) has a sublattice
isomorphic to the lattice D2 with (θ ◦µ)∩ (ν ◦ δ) 6⊆ α, then we call this
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sublattice a special D2 in Con(A). We say that V omits special
D2’s if for no A ∈ V does Con(A) have a sublattice that is a special
D2.

As an aid to recognizing copies of D2 in congruence lattices, we
record the following.

Lemma 5.27. A presentation of D2 relative to the variety of all
lattices is 〈G | R〉 where G = {x, y, z} and R consists of the relations:

(i) x ∧ z ≤ y,
(ii) x ≤ z ∨ (y ∧ x),

(iii) z ≤ x ∨ (y ∧ z), and
(iv) y ≤ (x ∧ y) ∨ (y ∧ z).

Moreover any lattice generated by G and satisfying the relations in R
and also satisfying x 6≤ y is isomorphic to D2.

Proof. The reader can easily verify that the copy of D2 in Fig-
ure 5.2 is generated by x, y and z, and that the relations in the state-
ment of the lemma hold for these elements. To show that it is a pre-
sentation of D2 we must prove from the relations (and the laws of
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lattice theory) that the seven elements x, y, z, p := x ∧ y, q := z ∧ y,
s := x ∧ y ∧ z, and t := x ∨ y ∨ z are closed under meet and join.

It is clear that the seven elements are ordered as they should be, and
consequently s and t are the bottom and top elements of the sublattice
they generate. The only incomparable doubletons are {x, y}, {x, z},
{x, q}, {y, z}, {p, z} and {p, q}. By symmetry, we do not need to
consider the meets or joins of {y, z} or {p, z}. For the remaining cases:

• {x, y}: x ∧ y = p by the definition of p. x ∨ y is above z by
relation (iii). Since x ∨ y is formally below x ∨ y ∨ z = t, it
must equal it.
• {x, z}: x ∧ z is below y by relation (i). This implies x ∧ z =
x∧ y ∧ z = s, as desired. x∨ z is above (x∧ y)∨ (y ∧ z), since
corresponding joinands are larger, and (x∧ y)∨ (y∧ z) ≥ y by
(iv). Therefore x ∨ z = x ∨ y ∨ z = t.
• {x, q}: x ∧ q = x ∧ (y ∧ z) = s by the definition of q. x ∨ q =
x ∨ (y ∧ z) is above z by (iii), therefore it is above x ∨ z = t
and hence equal to t.
• {p, q}: p ∧ q is below x ∧ z, which has already been shown

to be the bottom element, so p ∧ q = s. By (iv) we have
y ≤ (x ∧ y) ∨ (y ∨ z) = p ∨ q ≤ y, so p ∨ q = y.

This proves that 〈G | R〉 presents D2. For the last claim of the
lemma, any lattice generated by G satisfying the relations R which is
not isomorphic to D2 must be a proper quotient of D2. Since D2 is a
subdirectly irreducible lattice whose least congruence collapses p and
x, any such lattice will satisfy x = p ≤ y. Therefore, if a lattice is
generated by G and satisfies R but does not satisfy x ≤ y, then the
lattice is isomorphic to D2. �

Theorem 5.28. The following are equivalent for a variety V.
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(1) V satisfies an idempotent Maltsev condition that fails in the
variety of semilattices.

(2) Whenever θ, µ, ν and δ are congruences on some A ∈ V, then
(θ ◦ µ) ∩ (ν ◦ δ) ⊆ [(θ ∨ δ) ∧ (ν ∨ µ)] ∨ δ ∨ µ.

(3) V has a sequence of terms fi(x, y, u, v), 0 ≤ i ≤ 2m + 1, such
that
(i) V |= f0(x, y, u, v) ≈ x;
(ii) V |= fi(x, y, y, y) ≈ fi+1(x, y, y, y) for even i;

(iii) V |= fi(x, x, y, y) ≈ fi+1(x, x, y, y) and V |= fi(x, y, x, y) ≈
fi+1(x, y, x, y) for odd i;

(iv) V |= f2m+1(x, y, u, v) ≈ v.
(4) V omits special D2’s.

Proof. We first establish the equivalence of (2), (3) and (4), and
connect them to item (1) afterward.

Assume that (2) holds. On F = FV(x, y, u, v) let θ = CgF(x, u),
µ = CgF(u, v), ν = CgF(x, y), and δ = CgF(y, v). Since (x, v) ∈
(θ ◦ µ) ∩ (ν ◦ δ), and (2) holds:

(θ ◦ µ) ∩ (ν ◦ δ) ⊆ [(θ ∨ δ) ∧ (ν ∨ µ)] ∨ δ ∨ µ ,
we have (x, v) ∈ [(θ ∨ δ) ∧ (ν ∨ µ)] ∨ δ ∨ µ. Therefore, there is a
sequence f0, f1, . . . , f2m+1 of elements of F such that f0 = x, f2m+1 =
v, (fi, fi+1) ∈ δ ∨ µ for even i while (fi, fi+1) ∈ (θ ∨ δ)∧ (ν ∨ µ) for odd
i. If one chooses 4–ary terms representing the fi’s, it is straightforward
to see that the equations of (3) hold.

Assume that (3) holds and that some A ∈ V has congruences
µ, ν, α, δ and θ that generate a sublattice of Con(A) isomorphic to
D2 labeled as in Figure 5.1. Choose any (a, d) ∈ (θ ◦ µ) ∩ (ν ◦ δ).
There exist elements b, c ∈ A such that a ν b δ d and a θ c µ d. The
pairs (fi(a, b, c, d), fi+1(a, b, c, d)) belong to δ ∨ µ = α for even i and
(θ ∨ δ) ∧ (ν ∨ µ) ≤ α for odd i. Hence a = f0(a, b, c, d) is α-related to
f2m+1(a, b, c, d) = d. Since (a, d) ∈ (θ ◦µ)∩ (ν ◦ δ) was chosen arbitrar-
ily, this implies that (θ ◦ µ) ∩ (ν ◦ δ) ⊆ α. Therefore this copy of D2 is
not a special D2. The argument works for every D2 that appears in a
congruence lattice of a member of V, so V omits special D2’s.

Next we argue the contrapositive of (4)=⇒(2), so assume that some
A ∈ V has congruences µ, ν, δ and θ such that

(θ ◦ µ) ∩ (ν ◦ δ) 6⊆ [(θ ∨ δ) ∧ (ν ∨ µ)] ∨ δ ∨ µ .
Choose (a, d) ∈ (θ◦µ)∩(ν◦δ) satisfying (a, d) /∈ [(θ∨δ)∧(ν∨µ)]∨δ∨µ,
as well as elements b, c ∈ A such that a ≡θ b ≡µ d and a ≡ν
c ≡δ d. Let θ∗ := CgA((a, b), (c, d)), ν∗ := CgA((a, c), (b, d)), and
α∗ := CgA((b, d), (c, d))∨ (θ∗ ∧ ν∗). We will show that the congruences
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x := θ∗, y := α∗, and z := ν∗ satisfy the presentation for D2 given in
Lemma 5.27.

Item (i) of Lemma 5.27 requires that θ∗ ∧ ν∗ ≤ α∗, which is an
immediate consequence of the definition of α∗.

Item (ii) requires that θ∗ ≤ ν∗∨(α∗∧θ∗). Since ν∗ contains (a, c) and
(b, d) while α∗ ∧ θ∗ contains (c, d), the join is the congruence generated
by X×X where X = {a, b, c, d}. Hence the join contains the generators
(a, b) and (c, d) of θ∗. Item (iii) is symmetric to item (ii).

For item (iv), the congruence θ∗ ∧ α∗ contains {(c, d)} ∪ (θ∗ ∧ ν∗),
since this is true of each of θ∗ and α∗. Similarly ν∗ ∧ α∗ contains
{(b, d)} ∪ (θ∗ ∧ ν∗). This shows that (θ∗ ∧ α∗) ∨ (α∗ ∧ ν∗) contains all
the generators of α∗. Hence α∗ ≤ (θ∗ ∧ α∗) ∨ (α∗ ∧ ν∗).

Finally we must show that θ∗ 6≤ α∗. Assume that this is not the
case. Since (a, b) ∈ θ∗, this assumption forces (a, b) ∈ α∗. By definition,
θ∗ ≤ (θ ∨ δ), ν∗ ≤ (ν ∨ µ), CgA(c, d) ≤ δ and CgA(b, d) ≤ µ, so

α∗ = (θ∗ ∧ ν∗) ∨ CgA(c, d) ∨ CgA(b, d) ≤ [(θ ∨ δ) ∧ (ν ∨ µ)] ∨ δ ∨ µ .
Combining the facts that (a, b) ∈ α∗ and (b, d) ∈ µ, we obtain that
the right hand side of the previous displayed line contains (a, d). This
is contrary to the choice of (a, d), so we are forced to conclude that
θ∗ 6≤ α∗. This completes the proof that {θ∗, α∗, ν∗} generates a copy of
D2 in Con(A). Indeed, this is a special D2 since a ≡θ∗ b ≡α∗∧ν∗ d
and a ≡ν∗ c ≡α∗∧θ∗ d, so

(a, d) ∈ (θ∗ ◦ (α∗ ∧ ν∗)) ∩ (ν∗ ◦ (α∗ ∧ θ∗))− α∗.
This proves that item (4) of the theorem fails to hold.

Now we turn our attention to item (1). If 2 = 〈{0, 1}; +〉 is the
2-element join semilattice, θ, ν ∈ Con(2×2) are the projection kernels,
and α ∈ Con(2×2) is the kernel of the homomorphism +: 22 → 2, then
θ, ν and α generate a special D2. Therefore the variety of semilattices
does not satisfy the idempotent Maltsev condition in (3). This shows
that (3)=⇒(1). To complete the proof, we must prove that (1)=⇒(3).

Both (1) and (3) are statements about the idempotent Maltsev
conditions satisfied by V. The idempotent reduct Id(V) satisfies the
same idempotent Maltsev conditions as V, so to prove (1)=⇒(3) we
may (and do) assume that V is idempotent.

Suppose that (3) fails. Then V does not have terms satisfying the
identities listed in (3), so the method that we used to construct those
terms in our proof that (2)=⇒(3) must fail. Recall from that part of the
proof that we defined F = FV(x, y, u, v), θ = CgF(x, u), µ = CgF(u, v),
ν = CgF(x, y), and δ = CgF(y, v). We argued that if (x, v) ∈ [(θ ∨ δ)∧
(ν ∨µ)]∨ δ ∨µ, then (3) holds. Therefore, in our current situation, the
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congruence α := [(θ ∨ δ) ∧ (ν ∨ µ)] ∨ δ ∨ µ does not contain the pair
(x, v). Our plan is to use this fact to construct a nontrivial algebra in
V that has a compatible semilattice operation.

Let X = {x, y, u, v}, so that F = FV(X). Let G = FV(x, v) be
the subalgebra of F generated by {x, v}. The functions τi : X → X,
i = 1, 2, defined by τ1(x) = τ1(y) = x = τ2(x) = τ2(u) and τ1(u) =
τ1(v) = v = τ2(y) = τ2(v) are transversals for the equivalence rela-
tions E1 = EqX((x, u), (y, v)) and E2 = EqX((x, v), (y, u)) respectively.
These transversals induce homomorphisms hi : F → F whose kernels
are θ ∨ δ and ν ∨ µ respectively (according to Lemma 3.6 (1)), and
whose images are both G. Therefore the kernel of

h := h1 × h2 : F→ G×G : t(x, y, u, v) 7→ (t(x, x, v, v), t(x, v, x, v))

is [(θ∨ δ)∧ (ν ∨µ)]. The idempotence of V implies that this homomor-
phism is surjective. Namely, if (p, q) = (p(x, v), q(x, v)) ∈ G×G, then
(p ◦ q)(x, y, u, v) := p(q(x, y), q(u, v)) ∈ F is a preimage of (p, q) under
h. This shows that G is generated by the four elements h(x) = (x, x),
h(y) = (x, v), h(u) = (v, x), and h(v) = (v, v). Since the kernel of h is
contained in α = [(θ ∨ δ)∧ (ν ∨ µ)]∨ δ ∨ µ, we may use h to recast our
earlier assumption that (x, v) /∈ α as a statement about G×G. That as-
sumption is equivalent to the assumption that h(x, v) = ((x, x), (v, v))
does not belong to the congruence

h(α) = h([(θ ∨ δ) ∧ (ν ∨ µ)] ∨ δ ∨ µ)
= CgG×G(h(δ ∨ µ))
= CgG×G(h(y, v), h(u, v))
= CgG×G(((x, v), (v, v)), ((v, x), (v, v))) .

Therefore, if we let β = h(α), then β = CgG×G(Y × Y ) where Y =
{(x, v), (v, x), (v, v)}, and our earlier assumption that (x, v) /∈ α in F
is equivalent to the assumption that ((x, x), (v, v)) /∈ β in G×G.

For any (p, q) ∈ G2 there is an r ∈ G such that (p, q) β (r, r).
Indeed, if p = p(x, v) and q = q(x, v), then for r = p(q(x, v), v) we have

(5.8)

(p, q) = (p(x, v), q(x, v))
= (p(q(x, x), q(v, v)), p(q(x, v), q(x, v)))
= (p ◦ q)((x, x), (x, v), (v, x), (v, v))
≡β (p ◦ q)((x, x), (v, v), (v, v), (v, v))
= (p(q(x, v), q(v, v)), p(q(x, v), q(v, v)))
= (p(q(x, v), v), p(q(x, v), v))
= (r, r) .
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Of course, the element r need not be unique, since it may happen that
(p, q) β (r, r) β (s, s) for some s 6= r. To account for this nonunique-
ness, let γ be the congruence on G defined by

r γ s ⇐⇒ (r, r) β (s, s).

This is indeed a congruence, as it is ι−1(β) for ι : G→ G2 : p 7→ (p, p)
equal to the diagonal embedding. Write G for G/γ and p for p/γ if
p ∈ G. In this notation, we have shown in (5.8) that there is a well
defined function

∗ : G×G→ G : (p, q) 7→ r if (p, q) β (r, r).

Explicitly, the value of p ∗ q is p(q(x, v), v), as we have shown.
If q γ q′, then

p ∗ q = p(q(x, v), v) γ p(q′(x, v), v) = p ∗ q′,
since p is a term and γ is a congruence. Thus, left ∗-multiplication by
any p ∈ G is compatible with γ. Since the generators of β are invariant
under switching coordinates, the property (p, q) β (r, r) is equivalent
to (q, p) β (r, r), so p ∗ q = q ∗ p. This commutativity implies that right
∗-multiplication is also compatible with γ. Consequently ∗ induces a
well defined binary operation (also called ∗) on G:

∗ : G×G→ G : (p, q) 7→ r if (p, q) β (r, r).

We have already established the commutativity of this operation. The
idempotence of ∗ follows from the fact that (p, p) β (p, p) for any p ∈ G.
Associativity is clear, too, since

(p ∗ q) ∗ r = p(q(r(x, v), v), v) = p ∗ (q ∗ r) .
Thus ∗ is a semilattice operation on the set G. Moreover, ∗ is a com-
patible semilattice operation of the algebra G := G/γ. For suppose
that f is an n-ary basic operation of G, and that pi, qi ∈ G are chosen
arbitrarily. Choose ri such that (pi, qi) β (ri, ri) for all i. Then, since
β is a congruence, (f(p), f(q)) β (f(r), f(r)). This shows that

f(p) ∗ f(q) = f(r) = f(p ∗ q) .
Finally (and critically), G is nontrivial. Indeed, since ((x, x), (v, v)) /∈
β, we get that (x, v) /∈ γ, so x and v are distinct elements of G.

This proves that G ∈ V is a nontrivial algebra with a compatible
semilattice operation. Theorem 5.6 applies to show that the total re-
lation on G is rectangular. From Theorem 5.25 we derive that any
idempotent Maltsev condition satisfied by V is also satisfied by the
variety of semilattices. Thus (1) fails, and the proof is complete. �
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In Theorem 8.11 we will learn that if V satisfies an idempotent
Maltsev condition that fails in the variety of semilattices, then V omits
all D2’s, not just the special ones.



CHAPTER 6

A Theory of Solvability

A normal subgroup N of a group G is solvable if there is a finite
chain of normal subgroups of G,

{1} = N0 ⊆ N1 ⊆ · · · ⊆ Nk = N,

such that each factor Ni+1/Ni is abelian, or equivalently such that
[Ni+1, Ni+1] ⊆ Ni for all i. An interval I[M,N ] in the normal sub-
group lattice of G is a solvable interval if N/M is a solvable normal
subgroup of G/M . Normal subgroups M and N of G are solvably re-

lated, written M
s∼ N , if they belong to a solvable interval. We will

call the relation
s∼ “the solvability relation”, and refer to the study

of this solvability relation as the “theory of solvability” for groups.
Among the important features of the theory of solvability for groups
are:

• The solvability relation is a congruence on the normal sub-
group lattice of any group.

• The solvability relation is preserved by homomorphisms in the
sense that if M,N and P are normal subgroups of G with
P ≤ M ∩ N , then M is solvably related to N if and only if
M/P is solvably related to N/P in G/P .

• If N is a minimal normal subgroup of G, then N is solvable if
and only if it is abelian.

The ring-theoretic concept that corresponds directly to that of a
solvable normal subgroup is that of a nilpotent ideal. In the early
days of ring theory the concept of solvability was developed in analogy
with the group theoretical concept via the Wedderburn radical ( = the
largest nilpotent ideal, if it exists). Other radicals soon made their ap-
pearance, which permitted new approaches to solvability not bound to
finite chains of congruences with abelian factors. Moreover, in the case
of some radicals, the resulting “solvability theory” was no longer bound
to the abelian property. For example, if R is a subdirectly irreducible
ring that is not simple, then the Brown-McCoy radical ( = the inter-
section of maximal two-sided ideals) contains the monolith whether or

117



118 6. A THEORY OF SOLVABILITY

not the monolith is abelian. Thus, it can happen that a minimal non-
abelian congruence is contained in the Brown-McCoy radical, hence is
“solvable” in the Brown-McCoy sense.

A third approach to solvability, valid for arbitrary finite algebras,
is developed by D. Hobby and R. McKenzie in Chapter 7 of [34]. This
approach does not use chains of congruences with abelian factors nor
does it use radicals to define the solvability concept. Rather, one starts
by defining a pair (0, 1) ∈ A2 from an algebra A to be a 2-snag if there
is a polynomial p(x, y) ∈ Pol2(A) such that p(0, 0) = p(0, 1) = p(1, 0) =
0 and p(1, 1) = 1. Hobby and McKenzie observe that if A is a finite
algebra and α ≺ β are congruences on A, then C(β, β;α) holds if and
only if β − α contains no 2-snag. From this it is clear that a chain of
congruences:

α = α0 ≺ α1 ≺ · · · ≺ αk = β

has abelian factors αi+1/αi if and only if β−α contains no 2-snag. Start-

ing from this observation, it can be argued that the relation α
s∼ β,

defined by the condition that α and β contain the same 2-snags, is a
complete congruence on Con(A) for any locally finite algebra.

Our aim in this chapter is to synthesize ideas from the solvability
theories for groups, rings, and finite algebras in order to develop a
solvability theory for a wide class of varieties. The theory resembles the
theory for groups in that it is defined in terms of chains of congruences
with abelian factors. However, as we will show in Section 6.3, the
theory may viewed as an extension of the theory of solvability for rings
that is based on the prime radical ( = the intersection of all prime
congruences), since for rings our theory defines an ideal to be solvable
precisely when it is contained in the prime radical. Finally, anyone
familiar with the theory developed by Hobby and McKenzie in [34] will
recognize that our “solvability obstructions” (Definition 6.5) play the
role of their 2-snags, while Theorems 6.17, 6.23 and 6.25 of this chapter
are analogues of Theorem 7.9 (3), Corollary 7.13 and Lemma 6.5 of [34].

6.1. Varieties With A Weak Difference Term

There is an obstacle to the development of a very general solvabil-
ity theory that we must deal with first. Any absolutely free algebra
in any given signature is abelian in the sense of Chapter 2. If there
were a solvability theory that applied to all such algebras, where the
solvability relation is a congruence preserved by homomorphisms, then
such a theory must identify every congruence on every algebra as solv-
able. Such a theory would, of course, be trivial. We cannot avoid this
type of problem even if we restrict our attention to varieties satisfying
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a nontrivial idempotent Maltsev condition, since there exist algebras
(such as A =

〈
[0, 1]; x+y

2

〉
, the unit interval of the real line under the

averaging operation) that are abelian in the sense of Chapter 2, have a
Taylor term (f(x, y) = x+y

2
), but which have simple nonabelian homo-

morphic images (in this case, A/θ where θ = [0, 1)× [0, 1) ∪ {(1, 1)}).
This phenomenon, that solvable algebras have nonsolvable homomor-
phic images, prevents the development of a powerful solvability theory.

As it happens, there is a weakest idempotent Maltsev condition that
guarantees that homomorphic images of solvable algebras are solvable,
and this Maltsev condition is a strong enough hypothesis for the the-
orems that we have in mind. We start this chapter by discussing the
idempotent Maltsev condition on which the solvability theory is based,
and then we discuss the theory.

Definition 6.1. Let V be a variety. A ternary term d(x, y, z) is
a weak difference term for V if whenever A ∈ V, θ ∈ Con(A) and
(a, b) ∈ θ it is the case that

d(a, a, b) ≡ b ≡ d(b, a, a) (mod [θ, θ]).

The following theorem is included to show that our development
of a solvability theory only for varieties with a weak difference term is
reasonable.

Theorem 6.2. The class of varieties with a weak difference term is
definable by a nontrivial idempotent Maltsev condition. This idempo-
tent Maltsev condition is the weakest conjunction of idempotent Maltsev
conditions that implies that homomorphic images of solvable algebras
are solvable. It is also the weakest conjunction of idempotent Maltsev
conditions that implies that abelian algebras are affine.

Proof. The first and third statements are proved in Theorem 4.8
of [52]. We prove the second only.

If V has a weak difference term, then it can be shown (by using
Lemma 6.8 and following the same argument that works for groups)
that homomorphic images of solvable algebras are solvable.

Conversely assume that V satisfies some conjunction of idempotent
Maltsev conditions that implies that homomorphic images of solvable
algebras are solvable. At least one of these Maltsev conditions must
be nontrivial, since there exist solvable algebras with nonsolvable ho-
momorphic images (e.g.

〈
[0, 1]; x+y

2

〉
). The idempotent reduct Id(V)

of V satisfies the same idempotent Maltsev conditions as V, so homo-
morphic images of solvable algebras in Id(V) are again solvable. Let A
be the subvariety of Id(V) that is generated by the abelian algebras in
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Id(V). Since the class of abelian algebras in any language is axiomati-
zable by the universal Horn sentences of the term condition, this class
is closed under the formation of subalgebras and products. From our
assumption that homomorphic images of solvable algebras are solvable
we get that A consists of solvable algebras. In particular, A contains
no subvariety term equivalent to the variety of semilattices. Since A
also satisfies the nontrivial idempotent Maltsev conditions satisfied by
V, it follows from Lemma 2.5 of [47] that A must satisfy an idempo-
tent Maltsev condition that fails in the variety of semilattices. From
Theorem 4.10 of [52], it follows that the variety A is affine, and in
particular congruence permutable. If d(x, y, z) is a Maltsev operation
for A, then it will be a weak difference term for V, as is explained in
the proof of Theorem 4.8 of [52]. �

This theorem has a corollary which will prove useful in what follows.

Corollary 6.3. If a variety has a Hobby–McKenzie term, then it
has a weak difference term.

Proof. Theorem 4.10 of [52] proves that if V satisfies an idem-
potent Maltsev condition that fails in the variety of semilattices, then
abelian algebras in V are affine. Theorem 5.25 proves that the hypothe-
sis of this statement is equivalent to the existence of a Hobby–McKenzie
term, while Theorem 6.2 proves that the conclusion of the statement
implies the existence of a weak difference term. �

The concept of a weak difference term entered mathematics dur-
ing the development of commutator theory. Recall from the intro-
duction that A. I. Maltsev showed in [62] that a variety V has per-
muting congruences if and only if it has a term d(x, y, z) such that
V |= d(x, x, y) ≈ y ≈ d(y, x, x). In [31], C. Herrmann proved that
abelian algebras in a congruence modular variety V are affine by con-
structing a term d(x, y, z) from the Day terms for congruence mod-
ularity and showing that d(x, y, z) is a Maltsev term for any abelian
algebra in V.1 Then H. P. Gumm observed in [27] that the term con-
structed by Herrmann has the stronger properties that the identity
d(x, x, y) ≈ y holds in V, and d(b, a, a) ≡ b (mod [θ, θ]) for any A ∈ V,
θ ∈ Con(A), and (a, b) ∈ θ. Such a term is now called a difference
term. Difference terms play a central role in most developments of
modular commutator theory and in some extensions of the theory to
nonmodular varieties (see [45, 56, 58]). Weak difference terms were

1This fact, together with the fact that the class of congruence modular varieties
is definable by an idempotent Maltsev condition, already implies that d(x, y, z) is
a weak difference term for V , as the proof of Theorem 6.2 shows.
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first identified in [34]. They occur far more frequently than ordinary
difference terms, and are equally useful in most circumstances.

Examples 6.4. As noted in Theorem 6.2, any variety with a weak
difference term satisfies a nontrivial idempotent Maltsev condition, and
therefore has a Taylor term. The converse is not true in general, as we
explained in the first paragraph of this section, but the converse does
hold for certain classes of varieties. We describe some of these classes
now, thereby providing a number of examples of varieties with weak
difference terms.

Theorem 9.6 of [34] proves the converse for locally finite varieties:
that is, any locally finite variety that has a Taylor term has a weak
difference term.

Any idempotent abelian (or solvable) variety that has a Taylor term
has a weak difference term. (The proof of this is contained in the proof
of Theorem 6.2.)

A variety of semigroups that has a Taylor term has a weak differ-
ence term. For if f(x1, . . . , xn) = xi0 · · ·xik is a Taylor term for V, then
necessarily k ≥ 1. The idempotence of f implies that V |= xk+1 ≈ x.
Any semigroup S satisfying this equation has the property that (sk)2 =
sk−1sk+1 = sk−1s = sk for any s ∈ S, so k–th powers of elements of
S are idempotent. If e, f ∈ S are idempotent, and ef 6= fe, then
it can be shown that the subsemigroup of S generated by {e, f} has
a homomorphism onto a nontrivial left zero or right zero semigroup.
But a nontrivial left zero semigroup fails the i0–th Taylor identity for
f(x1, . . . , xn) = xi0 · · ·xik , and a nontrivial right zero semigroup fails
the ik–th Taylor identity. It follows that V has no nontrivial left or
right zero semigroups, and hence that no S ∈ V has a pair of non-
commuting idempotents. This fact may be expressed by saying that
the identity xkyk ≈ ykxk holds in V. Now we argue that the term
d(x, y, z) = xy2k−1z is a weak difference term for the variety of semi-
groups axiomatized by xk+1 ≈ x and xkyk ≈ ykxk. To justify this, it
suffices to show that if A is a semigroup in V and a, b ∈ A are elements
for which θ := CgA(a, b) is abelian, then d(a, a, b) = b = d(b, a, a).
To show that b = d(a, a, b) = a2kb = akb and b = bak it is enough
to prove that ak = bk. Since e = ak and f = bk are idempotent and
(e, f) = (ak, bk) ∈ θ, it suffices to prove that idempotents related by
an abelian congruence are equal. The θ, θ-term condition applied to
eef = ef = eff allows us to replace the underlined f with e and
obtain eee = efe. Since idempotents commute, this is equivalent to
e = ef . The same argument shows that f = ef , so e = f .
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It is easily seen that any congruence n-permutable variety satisfies
a nontrivial idempotent Maltsev condition, hence has a Taylor term.
Less obvious is the theorem of P. Lipparini in [57] that any congruence
n-permutable variety has a weak difference term.

6.2. ∞-Solvability

We now begin the development of a solvability theory for varieties
with a weak difference term. Any succesor ordinal, considered as a
lattice under its usual ordering, is a meet continuous lattice. By a
continuous sequence of congruences on an algebra A we mean
a meet continuous lattice homomorphism σ : κ+ 1 → Con(A), We
write such a sequence as (σλ)λ<κ+1 where σλ := σ(λ). It is not hard
to verify that (σλ)λ<κ+1 is a continuous sequence of congruences if and
only if σµ ≤ σλ for µ < λ and σλ =

⋃
µ<λ σµ for all limit ordinals λ.

Definition 6.5. Let A be an algebra with congruences α, β, θ, θλ, δ
and δ′.

If δ ≤ θ and C(θ, θ; δ) holds then we say that θ is abelian over δ,
and write δ � θ.

If κ is an ordinal, and (θλ)λ<κ+1 is a continuous sequence of con-
gruences such that θλ � θλ+1 for all λ < κ, then we say that θκ is
κ-step solvable over θ0.

We say that θ is ∞-solvable over δ if θ is κ-step solvable over δ
for some κ. We may denote this by δ �� θ. If 0 �� θ, then we say that
θ is ∞–solvable. If 0 �� 1, then say that A is ∞–solvable.

If α ∧ β �� α ∨ β, then we say that α is solvably related to β
and denote this by α

s∼ β.
If δ < θ, and δ � δ′ ≤ θ implies δ = δ′, then we call the congruence

interval I[δ, θ] a solvability obstruction and we denote this by δ J θ.

Note that for comparable congruences δ ≤ θ the relations δ �� θ
and δ

s∼ θ are the same.

Example 6.6. If V is a variety whose members have the property
that their principal congruences are abelian, then every member of V
is ∞–solvable. For if A ∈ V, (aλ)λ<κ is an enumeration of A, and θλ
is the congruence generated by {(a0, aµ) | µ < λ}, then it is not hard
to see that

(i) θ0 = 0 and θκ = 1,
(ii) θλ � θλ+1 for all λ < κ, and

(iii) θλ =
⋃
µ<λ θµ for all limit ordinals.
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Items (i) and (iii) follow immediately from the definition of θλ. For
item (ii), note that θλ+1 = CgA(a0, aλ)∨θλ. Thus θλ+1/θλ is a principal
(hence abelian) congruence on A/θλ. This implies that θλ � θλ+1 for
all λ < κ.

An example of a variety in which principal congruences are abelian
is the variety V of nonunital rings satisfying x2 ≈ 0. This identity
implies that 0 ≈ (x + y)2 ≈ x2 + xy + yx + y2 ≈ xy + yx, so the
anticommutative law xy ≈ −yx holds in V. This law implies that,
for any R ∈ V, all principal ideals have the form (a) = R · a. Hence
(a)2 = RaRa =

∑{ra · sa = −rsa2 | r, s ∈ R} = (0). Since congru-
ences correspond to ideals, and the commutator operation corresponds
to ideal multiplication, this is indeed a variety in which principal con-
gruences are abelian. Hence V consists entirely of∞–solvable algebras.

However, there is no cardinal bound on solvability degree in V. In
fact, if κ is any infinite cardinal, V contains rings of solvability degree
exactly κ. One such ring, Rκ, may be presented by generators and
relations relative to V as follows. Let S be an infinite set of cardinality
κ. Take as generators for Rκ all symbols xU where U is a nonempty
subset of S. Impose the relations

• 2xU = 0 for all nonempty U ⊆ S,
• xU · xV = 0 if U ∩ V 6= ∅, and
• xU · xV = xU∪V if U ∩ V = ∅.

These relations force each element of Rκ to be expressible as a finite
sum of generators xU1 + · · · + xUn where Ui 6= Uj if i 6= j. We leave
it as an exercise to prove that the ring Rκ is κ-step solvable, but not
λ-step solvable for any ordinal λ < κ.

Lemma 6.7. Let V be a variety with a weak difference term. If
A ∈ V has a tolerance T and a congruence δ such that C(T, T ; δ)
holds, then T ′ := δ ◦ T ◦ δ is the smallest congruence on A containing
T ∪ δ. Furthermore, C(T ′, T ′; δ) holds.

Proof. We know from the basic properties of the centralizer rela-
tion (enumerated in Theorem 2.19) that if C(T, T ; δ) holds and T ′ :=
δ ◦ T ◦ δ, then C(T ′, T ′; δ) holds. Since (T ∪ δ) ⊆ T ′ = δ ◦ T ◦ δ ⊆
CgA(T ∪ δ), the only thing left to show is that T ′ is a congruence. For
this we only need to establish that T ′ ◦ T ′ ⊆ T ′.

Let θ = CgA(T ′). Since C(T ′, T ′; δ) holds, it follows from Theo-
rems 3.23 and 6.2 that C(θ, θ; δ) holds. If (a, c) ∈ T ′ ◦T ′, then there is
an element b such that (a, b), (b, c) ∈ T ′ ⊆ θ. Since a ≡[θ,θ] d(a, b, b) ≡T ′
d(b, b, c) ≡[θ,θ] c and [θ, θ] ≤ δ, we get that (a, c) ∈ δ ◦T ′ ◦ δ = T ′. Since
(a, c) ∈ T ′ ◦ T ′ was chosen arbitrarily, T ′ ◦ T ′ ⊆ T ′. �
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Lemma 6.8. Let V be a variety with a weak difference term. If
A ∈ V has congruences θ and δ such that [θ, θ] ≤ δ, then C(θ, θ; δ)
holds.

Proof. Assume that [θ, θ] ≤ δ. If C(θ, θ; δ) does not hold, then
there are a polynomial p(x,y) and tuples a θ b and u θ v such that

p(a,u) ≡δ p(a,v)

and

(6.1) p(b,u) 6≡δ p(b,v).

Let p′(x,y) = d(p(x,y), p(x,u), p(b,u)). Using that d is an idempo-
tent term that is Maltsev on θ–classes modulo [θ, θ], we get that

p′(a,u) = d(p(a,u), p(a,u), p(b,u)) ≡[θ,θ] p(b,u) = p′(b,u).

Since C(θ, θ; [θ, θ]) holds, we can change the underlined u to v without
changing the fact that the left hand side is [θ, θ]–related to the right
hand side:

(6.2) p′(a,v) ≡[θ,θ] p
′(b,v).

Moreover we have that

(6.3)
p′(a,v) = d(p(a,v), p(a,u), p(b,u))

≡δ d(p(a,u), p(a,u), p(b,u)) ≡[θ,θ] p(b,u).

Here

d(p(a,v), p(a,u), p(b,u)) ≡δ d(p(a,u), p(a,u), p(b,u))

is a consequence of the fact that p(a,v) ≡δ p(a,u), and

d(p(a,u), p(a,u), p(b,u)) ≡[θ,θ] p(b,u)

is a consequence of the facts that a θ b and that d is Maltsev on
θ–classes modulo [θ, θ]. We also have that

(6.4) p′(b,v) = d(p(b,v), p(b,u), p(b,u)) ≡[θ,θ] p(b,v).

since u θ v and d is Maltsev on θ–classes modulo [θ, θ]. Combining
lines (6.2), (6.3), and (6.4) yields

p(b,u) ≡δ p′(a,v) ≡[θ,θ] p
′(b,v) ≡[θ,θ] p(b,v),

or simply p(b,u) ≡δ p(b,v) (since [θ, θ] ≤ δ). This contradicts line
(6.1), thereby completing the proof. �

The following corollary will be used in Section 9.2.
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Corollary 6.9. Let V be a variety with a weak difference term.
Assume that T is an abelian tolerance on some A ∈ V, and that a
and b are distinct T -related elements. If ρ is a congruence on A that
is maximal with respect to (a, b) /∈ ρ, then T/ρ is a nontrivial abelian
congruence on the subdirectly irreducible algebra A/ρ.

Proof. It follows from Lemma 6.7 (using δ = 0) that T is an
abelian congruence on A. Then, using Lemma 6.8 in the case where
θ = T and δ = ρ, we obtain that C(T, T ; ρ) holds, so T/ρ is a nontrivial
abelian tolerance on the subdirectly irreducible algebra A/ρ. Using
Lemma 6.7, we find that T/ρ is a congruence. �

Lemma 6.10. Let V be a variety with a weak difference term. As-
sume that A ∈ V has congruences α, β, and γ.

(1) If α � β, then (α ∧ γ) � (β ∧ γ) and (α ∨ γ) � (β ∨ γ).
(2) If α �� β, then (α ∧ γ) �� (β ∧ γ) and (α ∨ γ) �� (β ∨ γ).

Proof. To prove the part of item (1) that concerns the compati-
bility of � with meet, recall that α � β means that C(β, β;α) holds.
By item (1) of Theorem 2.19 we have that C(β ∧ γ, β ∧ γ;α) holds.
By item (8) of Theorem 2.19 we have that C(β ∧ γ, β ∧ γ; γ) holds.
Item (6) of Theorem 2.19 now yields that C(β ∧ γ, β ∧ γ;α ∧ γ) holds,
which means that (α ∧ γ) � (β ∧ γ).

To prove the compatibility of � with join, assume that C(β, β;α)
holds. Then [β, β] ≤ α ≤ α∨γ, so by Lemma 6.8 we get that C(β, β;α∨
γ) holds. Using Lemma 6.7 with T = β and δ = α ∨ γ we deduce that
(α∨γ)◦β ◦ (α∨γ) = β∨ (α∨γ) = β∨γ and that C(β∨γ, β∨γ;α∨γ)
holds. This shows that (α ∨ γ) � (β ∨ γ), so item (1) holds.

For (2), assume that (θλ)λ<κ+1 is a continuous sequence of congru-
ences for which α = θ0, β = θκ, θλ � θλ+1 for all λ. The sequences
(θλ ∧ γ)λ<κ+1 and (θλ ∨ γ)λ<κ+1 are also continuous, since meeting or
joining with the fixed element γ preserves order and unions of chains.
Therefore it follows from item (1) of this lemma that (θλ ∧ γ)λ<κ+1

and (θλ ∨ γ)λ<κ+1 are sequences witnessing (α ∧ γ) �� (β ∧ γ) and
(α ∨ γ) �� (β ∨ γ), respectively. �

Theorem 6.11. Let V be a variety with a weak difference term. If
A ∈ V, then

s∼ is a congruence on Con(A) that is compatible with the
complete join operation.

Proof. Recall that α
s∼ β holds if and only if (α∧ β) �� (α∨ β).

It is easy to see that this relation is reflexive and symmetric. To show
that it is transitive, assume that α

s∼ β
s∼ γ. Then (α∧β) �� (α∨β)

and (β ∧ γ) �� (β ∨ γ), so by the second statement of Lemma 6.10 we



126 6. A THEORY OF SOLVABILITY

get that (α∧ β ∧ γ) = (α ∧ β)∧ (β ∧ γ) �� (α ∧ β)∧ (β ∨ γ) = (α∧ β)
and (α ∨ β) = (α ∨ β) ∨ (β ∧ γ) �� (α ∨ β) ∨ (β ∨ γ) = (α ∨ β ∨ γ).
Thus we have

(α ∧ β ∧ γ) �� (α ∧ β) �� (α ∨ β) �� (α ∨ β ∨ γ).

The well–ordered chains of congruences that witness these three in-
stances of∞–solvability may be concatenated to produce a single such
chain from α∧β ∧γ to α∨β ∨γ, thus proving that (α∧β ∧γ) �� (α∨
β ∨ γ). Since (α ∧ β ∧ γ) ≤ α ∧ γ ≤ α ∨ γ ≤ (α ∨ β ∨ γ), we can
deduce that (α ∧ γ) �� (α ∨ γ) if we show first that δ ≤ δ ′ ≤ θ′ ≤ θ
and δ �� θ imply δ′ �� θ′. We show this by using Lemma 6.10 again:
joining δ �� θ with δ′ we obtain

δ′ = (δ′ ∨ δ) �� (δ′ ∨ θ) = θ.

Meeting with θ′ we find that

δ′ = (δ′ ∧ θ′) �� (θ ∧ θ′) = θ′.

This reasoning completes the argument that
s∼ is transitive, hence an

equivalence relation, and also shows that subintervals of ∞–solvable
intervals are again∞–solvable. Hence

s∼–classes are convex sublattices
of Con(A). This implies that α

s∼ β if and only if α and β belong to
some ∞–solvable interval. This reformulation of the definition of the
s∼–relation makes it easy to see that it is a congruence: α

s∼ β if and
only if δ := α ∧ β �� α ∨ β =: θ. But δ �� θ implies δ ∧ γ �� θ ∧ γ
and δ ∨ γ �� θ ∨ γ by Lemma 6.10. Since α ∧ γ, β ∧ γ ∈ I[δ ∧ γ, θ ∧ γ]

and α∨ γ, β ∨ γ ∈ I[δ ∨ γ, θ ∨ γ], we conclude that α
s∼ β implies that

(α ∧ γ)
s∼ (β ∧ γ) and (α ∨ γ)

s∼ (β ∨ γ).

It remains to show that
s∼ is compatible with the complete join

operation of Con(A). Suppose that αi
s∼ βi for all i ∈ I. Let δi =

αi ∧ βi and θi = αi ∨ βi. Then δi �� θi for all i. If ∆ :=
∨
i∈I δi

and Θ :=
∨
i∈I θi, then both

∨
i∈I αi and

∨
i∈I βi belong to the interval

I[∆,Θ]. We will be done if we show that Θ is ∞–solvable over ∆.
Consider the collection P of all sequences of the form σ = (σλ)λ<κ+1

where σλ ∈ Con(A) and

(0) σ0 = ∆, σκ ∈ I[∆,Θ],
(1) σλ � σλ+1 for all λ < κ, and
(2) σλ =

⋃
µ<λ σµ for limit ordinals λ.

The elements of P are the continuous sequences of congruences that
witness the ∞–solvability over ∆ of some elements σκ ∈ I[∆,Θ]. P
is nonempty, since it contains the one-term sequence (∆). P can be
partially ordered by the rule: σ ≤ σ′ if σ′ is an extension of σ. That
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is, σ ≤ σ′ if the domain of σ is contained in the domain of σ′ and the
functions agree on their common domain. This is an inductive ordering
of P, as we now explain. Assume that (σµ)µ<ν is an increasing sequence
of sequences in P. Define Σ′ to be the union of the functions σµ. Σ′

is a function from the ordinal ρ :=
⋃
µ<ν dom(σµ) into Con(A) that

preserves all existing joins. Σ′ may not be in P because elements of
P are functions from successor ordinals into Con(A) and ρ may be
a limit ordinal. But if it is, then there is a unique meet continuous
extension of Σ′ to ρ + 1: it is the sequence Σ = (Σλ)λ<ρ+1 where
(Σλ)λ<ρ = Σ′ and Σρ is defined to be

⋃
λ<ρ Σλ. Since Σ is a meet

continuous homomorphism from a successor ordinal into Con(A), Σ
extends each σµ, and Σλ = σµλ�σµλ+1 = Σλ+1 for some µ for each λ < ρ,
Σ is an upper bound in P for all the sequences σµ.

Since P is nonempty and inductively ordered, Zorn’s lemma applies
to show that P has a maximal element (ψλ)λ<κ+1. The final congruence
in this sequence, ψκ, is∞–solvable over ∆ and is a maximal congruence
in the interval I[∆,Θ] among those that are ∞–solvable over ∆. For
each i ∈ I, δi �� θi and δi ≤ ∆ ≤ ψκ, so by Lemma 6.10 we have

ψκ = (ψκ ∨ δi) �� (ψκ ∨ θi) ≤ Θ.

The maximality condition on ψκ implies that ψκ = ψκ ∨ θi, or ψκ ≥ θi.
Since this is true for all i ∈ I, ψκ ≥

∨
i∈I θi = Θ. This proves that

∆ �� ψκ = Θ, as desired. �
Definition 6.12. Assume that V is a variety with a weak difference

term, and A ∈ V. If α ∈ Con(A), then

rad(α) :=
∨
{β ∈ Con(A) | α s∼ β}

is the ∞–solvable radical of α. The ∞–solvable radical of A is
rad(0). A radical congruence is a congruence α such that rad(α) =
α.

Theorem 6.13. Let V be a variety with a weak difference term.
Assume that A ∈ V and that α, β ∈ Con(A). Then

(1) rad(α) is the largest congruence
s∼–related to α.

(2) rad(rad(α)) = rad(α).
(3) rad(α ∧ β) = rad(α) ∧ rad(β).
(4) α J β if and only if α < β and α = β ∧ rad(α).
(5) If Rad(A) denotes the meet subsemilattice of Con(A) consist-

ing of the radical congruences, then the restriction to Rad(A)

of the natural homomorphism ν : Con(A) → Con(A)/
s∼ :

α 7→ α/
s∼ to Rad(A) is an isomorphism onto Con(A)/

s∼.
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(6) The natural homomorphism ν from item (5) is meet continu-

ous, and its image Con(A)/
s∼ meet semidistributive.

Proof. For item (1), the fact that
s∼ is compatible with the com-

plete join operation implies that the join of all congruence
s∼–related

to α is
s∼–related to α, and it is necessarily the largest congruence

s∼–related to α.
For (2), α

s∼ rad(α) and rad(α)
s∼ rad(rad(α)) hold by (1), so

α
s∼ rad(rad(α)). Since rad(α) is the largest congruence

s∼–related to
α, it follows that rad(rad(α)) ≤ rad(α). The reverse inclusion follows

from the facts that rad(α)
s∼ rad(α) and rad(rad(α)) is the largest

congruence
s∼–related to rad(α).

For (3), α
s∼ rad(α) and β

s∼ rad(β), so α ∧ β s∼ rad(α) ∧ rad(β)

since
s∼ is a congruence. Since rad(α ∧ β) is the largest congruence

s∼–related to α ∧ β we get that rad(α) ∧ rad(β) ≤ rad(α ∧ β). On the

other hand, α ∧ β s∼ rad(α ∧ β), so

α = α ∨ (α ∧ β)
s∼ α ∨ rad(α ∧ β) ≤ rad(α)

from the definition of rad(α). Thus, rad(α∧β) ≤ rad(α), and similarly
rad(α ∧ β) ≤ rad(β), so rad(α ∧ β) ≤ rad(α)∧ rad(β). This completes
the proof of (3).

For (4), assume that α J β. Then α < β according to the definition
of J. The congruence α′ := β ∧ rad(α) satisfies α ≤ α′ ≤ rad(α) and
is in I[α, β], so it is a congruence in I[α, β] that is ∞–solvable over α.
If this fact is witnessed by a chain of congruences (θλ)λ<κ+1 starting
at θ0 = α and ending at θκ = α′, and satisfying the conditions of
Definition 6.5, then using the fact that α J β and induction it follows
that θλ = α for all λ, so α = α′ = β∧ rad(α). Conversely, if α J β fails
to hold and α < β, then there is a congruence α′ ∈ I[α, β] such that

α� α′ and α < α′. Since α
s∼ α′ we get that α < α′ ≤ β ∧ rad(α), so

α = β ∧ rad(α) fails to hold.

For (5), it is clear that ν : Rad(A) → Con(A)/
s∼ is an order-

preserving function between meet semilattices. To prove that it is
an isomorphism it suffices to show that it is bijective, or equivalently
that the elements of Rad(A) form a transversal for the congruence
s∼. The fact that α

s∼ rad(α) (proved in (1)) together with the fact
that rad(α) ∈ Rad(A) (an equivalent form of (2)) shows that every
s∼–class contains a radical congruence. But the fact proved in (1), that

every radical element is the largest element of its
s∼–class, implies that

each
s∼–class has at most one radical congruence. This shows that the

elements of Rad(A) form a transversal for
s∼.
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For (6), the fact that
s∼ is compatible with the complete join opera-

tion implies that it is a meet continuous congruence, hence the quotient
modulo this congruence is meet continuous and the natural homomor-
phism ν : Con(A) → Con(A)/

s∼ is a meet continuous homomor-

phism. To prove that Con(A)/
s∼ is meet semidistributive, suppose

that (α/
s∼) ∧ (β/

s∼) = (α/
s∼) ∧ (γ/

s∼) = (δ/
s∼). From item (5)

we get that rad(α) ∧ rad(β) = rad(α) ∧ rad(γ) = rad(δ) in Rad(A).
Since Rad(A) is a meet subsemilattice of Con(A), these equalities hold
in Con(A). Theorem 2.19 (8) implies that C(rad(β), rad(α); rad(δ))
and C(rad(γ), rad(α); rad(δ)) hold. Theorem 2.19 (5) now yields that
C(rad(β) ∨ rad(γ), rad(α); rad(δ)) holds. If

θ := rad(α) ∧ (rad(β) ∨ rad(γ)),

then θ ≥ rad(δ) and C(θ, θ; rad(δ)) holds according to Theorem 2.19 (1).
This shows that rad(δ)�θ. But rad(δ) J 1 or else rad(δ) = 1, by items
(2) and (4) of this theorem, and in either case we get

rad(δ) = θ = rad(α) ∧ (rad(β) ∨ rad(γ)).

Using the isomorphism from (5) once again, we conclude that (α/
s∼)∧

((β/
s∼) ∨ (γ/

s∼)) = (δ/
s∼). This proves that Con(A)/

s∼ is meet
semidistributive. �

Theorem 6.14. Let V be a variety with a weak difference term. If
A ∈ V has congruences δ ≤ θ, then θ is ∞–solvable over δ if and only
if the interval I[δ, θ] contains no solvability obstruction.

Proof. Assume that θ is ∞–solvable over δ, and that I[α, β] is
an arbitrarily chosen but nontrivial subinterval of I[δ, θ]. Then δ =

δ ∧ α s∼ θ ∧ α = α, so rad(α) = rad(δ) ≥ θ ≥ β. This shows that
α < β = β ∧ rad(α). By item (4) of Theorem 6.13, I[α, β] is not a
solvability obstruction.

Conversely, assume that I[δ, θ] contains no solvability obstruction.

Let α = θ ∧ rad(δ). Then since δ ≤ α ≤ rad(δ) we get that δ
s∼ α,

and hence that rad(α) = rad(δ). This means that α = θ ∧ rad(α).
According to item (4) of Theorem 6.13, either α J θ or else α = θ.
The first possibility is ruled out by the assumption that I[δ, θ] contains

no solvability obstruction, so it must be that α = θ. Since δ
s∼ α = θ,

the proof is complete. �

Lemma 6.15. Let V be a variety with a weak difference term. As-
sume that A ∈ V has congruences γ, γ ′, δ and δ′ such that γ′ � γ and
δ′ � δ. Then γ ◦ δ ⊆ γ ′ ◦ δ ◦ γ ◦ δ′.
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Proof. Choose any (a, c) ∈ γ ◦ δ. There is a b ∈ A such that
a ≡γ b ≡δ c, so

a ≡γ′ d(a, b, b) ≡δ d(a, b, c) ≡γ d(b, b, c) ≡δ′ c
shows that (a, c) ∈ γ ′ ◦ δ ◦ γ ◦ δ′. �

Theorem 6.16. Let V be a variety with a weak difference term. If
A ∈ V, then

s∼–classes of Con(A) consist of permuting congruences.
In particular, these classes are modular sublattices.

Proof. We assume that the theorem is false and argue to a contra-
diction. If some

s∼–class of Con(A) contains a pair of nonpermuting

congruences, then there is a subinterval I[σ, τ ] of that
s∼–class that

contains the two congruences. (For example, we could take σ to be the
meet and τ to be the join of the two nonpermuting congruences.) Let
A denote the ordered set of all congruences θ ∈ I[σ, τ ] such that every
congruence in I[σ, θ] permutes with every congruence in I[σ, τ ]:

A = {θ ∈ I[σ, τ ] | ∀θ′ ∈ I[σ, θ], ∀ψ ∈ I[σ, τ ] (θ′ ◦ ψ = ψ ◦ θ′)}.
A is nonempty (since σ ∈ A) and it is closed under updirected unions,
therefore A has maximal elements. Let α be a maximal element of A. It
must be that α < τ since otherwise all congruences in I[σ, τ ] permute,
contrary to assumption. Since I[σ, τ ] is ∞–solvable and σ ≤ α < τ ,
there is a congruence α̂ such that α < α̂ ≤ τ and α� α̂. The set

B = {θ ∈ I[σ, τ ] | ∀θ′ ∈ I[σ, θ], ∀ψ ∈ I[σ, α̂] (θ′ ◦ ψ = ψ ◦ θ′)}
of all θ ∈ I[σ, τ ] such that every congruence in I[σ, θ] permutes with
every congruence in I[σ, α̂] is also nonempty and closed under updi-
rected unions, so B has a maximal element β. We cannot have β = τ
since this would force α̂ ∈ A, contradicting the the maximality of α.

Since β < τ , there is a congruence β̂ such that β < β̂ ≤ τ and β � β̂.

By the maximality of β and the fact that β < β̂, there is some δ ≤ β̂
which fails to permute with some γ ≤ α̂. Every congruence below β
permutes with every congruence below α̂, so δ 6≤ β. Every congruence
below α permutes with every congruence in I[σ, τ ], so γ 6≤ α. Therefore
γ′ = α ∧ γ is strictly less than γ and δ′ = β ∧ δ is strictly less than δ.
The four congruences γ, γ ′, δ and δ′ have the following properties:

(i) γ′ < γ ≤ α̂, γ′ ≤ α;

(ii) δ′ < δ ≤ β̂, δ′ ≤ β;
(iii) γ′ � γ, δ′ � δ; and
(iv) any two congruences in {γ, γ ′, δ, δ′} permute, except γ ◦ δ 6⊆

δ ◦ γ.
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(The first, second and fourth items follow from the way we chose

α, α̂, β, β̂, γ, γ′, δ, and δ′. The third item follows from Lemma 6.10
since, for example, α� α̂ so γ ′ = α∧ γ � α̂∧ γ = γ.) By item (iii) and
Lemma 6.15 we have γ ◦ δ ⊆ γ ′ ◦ δ ◦ γ ◦ δ′. But by items (i), (ii) and
(iv) we have

γ′ ◦ δ ◦ γ ◦ δ′ = δ ◦ γ′ ◦ γ ◦ δ′ = δ ◦ γ ◦ δ′ = δ ◦ δ′ ◦ γ = δ ◦ γ.
Thus γ ◦ δ ⊆ δ ◦ γ, in contradiction with (iv). This is a contradic-
tion to the assumption that I[σ, τ ] contains a pair of nonpermuting
congruences.

For the final statement of the theorem, recall that any lattice of
permuting equivalence relations is modular. �

This result may be used to establish a new characterization of vari-
eties with a weak difference term. In the following theorem, a lattice L
has an SD∧/Modular factorization in a category C of lattices if there
is a C-morphism of L onto a meet semidistributive lattice whose kernel
classes are modular.

Theorem 6.17. The following are equivalent for a variety V.

(1) V has a weak difference term.
(2) For every A ∈ V, Con(A) has an SD∧/Modular factorization

in the category of meet continuous lattices.
(3) For every A ∈ V, Con(A) has an SD∧/Modular factorization

in the category of ordinary lattices.
(4) For every A ∈ V, each SD∧-failure in Con(A) is modular.
(5) If L belongs to the meet continuous congruence variety of V,

then each SD∧-failure in L is modular.

Proof. If V has a weak difference term, then the natural homo-
morphism ν : Con(A) → Con(A)/

s∼ is a homomorphism of meet
continuous lattices whose image is meet semidistributive according to
Theorem 6.13 (6). The kernel classes are modular according to Theo-
rems 6.16. This proves that (1)=⇒(2).

The implications (2)=⇒(3)=⇒(4) are straightforward; the first since
any factorization in the category of meet continuous lattices is a factor-
ization in the category of lattices, and the second because SD∧-failures
must be collapsed by any homomorphism into a meet semidistributive
lattice.

Assume that SD∧-failures of Con(A) are modular for any A ∈ V.
As explained in the third paragraph of Remark 2.24, the class of meet
continuous lattices whose SD∧-failures are modular is a definable by a
meet continuous identity. If (4) holds, then the congruence lattices of
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algebras in V satisfy this identity, so the meet continuous congruence
variety of V also satisfies it, hence (5) holds.

According to Theorem 4.7 the class of varieties U that satisfy the
the meet continuous congruence identity expressing the fact that SD∧-
failures are modular is definable by idempotent Maltsev conditions. To
show that (5)=⇒(1) we must show that these Maltsev conditions are
strong enough to force the existence of a weak difference term. By The-
orem 6.2, it is enough to show that if V is a variety satisfying (5) then
the abelian algebras in V are affine. So let V be any variety satisfying
condition (5), and let A be the subvariety of V that is generated by
the abelian algebras of V. A must also satisfy item (5), and in partic-
ular (since the variety of sets does not satisfy (5)) this implies that A
has a Taylor term. Let F = FA(4) be the 4-generated free algebra of
this variety. F is abelian since A is generated by abelian algebras, the
abelian property is preserved by subalgebras and products, and free
algebras may be constructed as subalgebras of products of generating
algebras. Since F is abelian, there is a congruence ∆ on F2 that has the
diagonal D = {(f, f) | f ∈ F} as a class. It follows from Lemma 4.4
of [52] (in the case γ = δ = 1 of that result) that since A has a Tay-
lor term the congruence ∆ is a lattice complement of the coordinate
projection kernels η1, η2 ∈ Con(F2). Since ∆ ∧ η1 = ∆ ∧ η2 = 0, the
interval I[0,∆∨ (η1∨η2)] = I[0,∆] is an SD∧-failure. By item (5), this
interval is modular. Since the diagonal D is a ∆-class, it follows from
Lemma 2.4 of [34] that restriction is a lattice homomorphism from the
interval I[0,∆] to Con(F2|D), where F2|D is the algebra induced on
D by F2, so Con(F2|D) is modular. The operations of F2|D are the
polynomial operations of F2 under which D is closed, each of which
agrees with some polynomial operation of F acting coordinatewise on
D. Thus, F2|D is isomorphic as a nonindexed algebra to the algebra
F|F that F induces on itself. But the congruence lattices of F and
F|F are the same, so F = FA(4) has a modular congruence lattice.
By Day’s Theorem, [8], this implies that A is congruence modular.
Since A is generated by abelian algebras, modular commutator theory
implies that all algebras in A are affine. �

Example 6.18. There exists a purely lattice-theoretic proof that
(2)=⇒(3)=⇒(4) in Theorem 6.17, but not for the reverse implications.
Those implications are false even for congruence lattices of individual
algebras.

For example, if L is a lattice of height ≤ 3, then any SD∧-failure has
height ≤ 2, hence is modular. Thus, any finite, nonmodular, simple
lattice of height ≤ 3 has the properties that it is algebraic (hence
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isomorphic to the congruence lattice of some algebra), has modular
SD∧-failures, but has no SD∧/Modular factorization. There are many
graph lattices satisfying the required conditions (cf. Section 4.4).

There also exist algebraic lattices with SD∧/Modular factorizations
in the category of ordinary lattices and no such factorization in the
category of meet continuous lattices, such as the one in Figure 6.1.
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Figure 6.1. No SD∧/Modular factorization in LMC

We next show that the relation
s∼ behaves well with respect to the

class operators H, S and Pfin.

Theorem 6.19. Let V be a variety with a weak difference term.

(1) If A ∈ V and α, β ≥ γ are congruences on A, then α
s∼ β in

Con(A) if and only if α/γ
s∼ β/γ in Con(A/γ).

(2) If B is a subalgebra of A ∈ V, then α
s∼ β in Con(A) implies

that α|B s∼ β|B in Con(B).
(3) If A ∈ V has congruences α and β and B ∈ V has congruence

γ and δ, then α × γ s∼ β × δ in Con(A × B) if and only if

α
s∼ β in Con(A) and γ

s∼ δ in Con(B).

In particular, the class of ∞–solvable algebras in V is closed under the
formation of homomorphic images, subalgebras and finite products.

Proof. It follows from Theorem 2.19 (10) that if γ ≤ δ ≤ θ, then
δ � θ if and only if δ/γ � θ/γ. It is also true that a sequence (θλ)λ<κ
of congruences on A, each containing γ, is continuous if and only if
(θλ/γ)λ<κ is. The property α

s∼ β in Con(A) is the property that there
exists a continuous sequence of congruences witnessing ∞-solvability
from α ∧ β to α ∨ β, which is therefore equivalent to the existence
of a continuous sequence of congruences witnessing ∞-solvability from
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(α∧ β)/γ = (α/γ)∧ (β/γ) to (α∨ β)/γ = (α/γ)∨ (β/γ). Hence α
s∼ β

is equivalent to α/γ
s∼ β/γ when γ ≤ α ∧ β. This proves (1).

It follows from Theorem 2.19 (9) that restriction to B preserves
the relation � (i.e., δ � θ in Con(A) implies δ|B � θ|B). Since re-
striction to B also preserves unions of chains, it must preserve ��.
Hence ∞-solvable intervals in Con(A) restrict to ∞-solvable intervals

in Con(B). Since α
s∼ β if and only if α and β lie in a single∞-solvable

interval,
s∼ is also preserved under restriction to B. This proves (2).

Applying item (1) to A×B (with the coordinate projection kernels

η1 and η2 playing the role of γ in (1)) we obtain that α
s∼ β in Con(A)

if and only if α1
s∼ β1 in Con(A×B) and similarly γ

s∼ δ in Con(B) if

and only if γ2
s∼ δ2 in Con(A×B). Since∞-solvability is a congruence,

the conjunction of α
s∼ β and γ

s∼ δ implies that

α× γ := α1 ∧ γ2
s∼ β1 ∧ δ2 =: β × δ.

Conversely, if α × γ
s∼ β × δ, then again because ∞-solvability is a

congruence we get

α1 = η1 ∨ (α× γ)
s∼ η1 ∨ (β × δ) = β1,

and similarly γ2
s∼ δ2. As proved above, these instances of

s∼ hold if
and only if α

s∼ β in Con(A) and γ
s∼ δ in Con(B). �

By a partial Maltsev operation on a set A we mean a function
m : D → A, for some domain D ⊆ A3 containing all triples (x, y, y)
and (y, y, x), x, y ∈ A, which satisfies m(x, y, y) = x = m(y, y, x) for
all x, y ∈ A.

Theorem 6.20. Let V be a variety with a weak difference term.
Assume that A ∈ V, θ ∈ Con(A) is ∞-solvable, and S ⊆ An[θ] is
a subset. If S is compatible with the operations of A, then S is also
compatible with some partial Maltsev operation on A

Proof. Recall from the opening paragraph of Chapter 2 that An[θ]
is defined to be {x ∈ An | xi ≡θ xj for all i, j}. Assume that S ⊆
An[θ] is compatible with the operations of A. We will show that S
is compatible with the partial Maltsev operation on A with smallest
domain, which is

D = {(a, b, b) | a, b ∈ A} ∪ {(a, a, b) | a, b ∈ A}.
We must show that if a,b, c ∈ S and the tuple

m(a,b, c) = (m(a1, b1, c1), m(a2, b2, c2), . . . , m(an, bn, cn)) =: d
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is defined in all coordinates, then d ∈ S. To be defined in all coordi-
nates, it must be the case that ai = bi or bi = ci (or both) for all i.
Assume that this is so. Let I ⊆ N := {1, . . . , n} be the set of coordi-
nates where ai = bi. If I = ∅, then b = c, so d = a ∈ S. If I = N ,
then a = b, so d = c ∈ S. Thus the only nontrivial cases are those
where ∅ 6= I 6= N . Restrict attention to those, and let J = N − I.

Let S be the subalgebra of An that is supported by S = An[θ].
Elements u,v ∈ S are related by θi ( = π−1

i (θ)) if and only if ui ≡θ vi.
Since S ⊆ An[θ] this implies that uj ≡θ ui ≡θ vi ≡θ vj for any j,

hence that θi ⊆ θj for any i and j. Let θ̂ denote the congruence
θ1 = θ2 = · · · = θn of S. It follows from Theorem 6.19 (1) and (2) that

θi
s∼ ηi for each i, so θ̂ =

∧
θi

s∼∧ ηi = 0, proving that θ̂ is ∞-solvable.

If i ∈ I, then ηI ≤ ηi ≤ θi = θ̂, and a similar argument proves that

ηJ ≤ θ̂. Since θ̂ is ∞-solvable, ηI
s∼ θ̂ s∼ ηJ . This and Theorem 6.16

prove that ηI and ηJ are permuting congruences of S. According to
the definition of I and J , we have a ηI b ηJ c, so there must exists a
tuple x ∈ S such that a ηJ x ηI c. The tuple x satisfies the condition
that xi = ci if i ∈ I and xj = aj if j ∈ N − I = J . That is, xi =
ci if m(ai, bi, ci) = m(ai, ai, ci) = ci, and xj = aj if m(aj, bj, cj) =
m(aj, cj, cj) = aj. This proves that x = d, hence d = x ∈ S as
desired. �

It is a general fact that if A is an algebra, m is an operation on
A, and for every cardinal κ any relation S ⊆ Aκ compatible with the
operations of A is also compatible with m, then m is a term operation
of A. If instead one only has that any finitary relation S on A that is
compatible with the operations of A is also compatible with m, then
m is only guaranteed to be a local term operation of A. This means
that for any finite subset F ⊆ A there is a term operation tF that
agrees with m on F . Theorem 6.20 suggests the possibility that if V
has a weak difference term and A ∈ V is ∞-solvable, then A has a
local Maltsev term operation. Admittedly Theorem 6.20 speaks only
about partial Maltsev operations, but that is exactly what one would
expect of a result like Theorem 6.20 if the local Maltsev term operation
were not unique. These observations lead to speculations recorded in
the following problem.

Problem 6.21. Assume that V has a weak difference term, and
that A ∈ V is∞-solvable. Does A have a local Maltsev term operation?
Does A have a Maltsev term operation? If V is generated by ∞–
solvable algebras, then must V be congruence permutable?
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Although affirmative answers to these questions seem unlikely, it is
true that for each finite n there is term that is Maltsev on classes of n-
step solvable congruences of algebras in V. It would be interesting if this
property extended to congruences with higher degrees of solvability.

Corollary 6.22. Let V be a variety with a weak difference term.
If A ∈ V, ρ

s∼ 0 in Con(A) and S ⊆ ρ (= A2[ρ]) is a reflexive
compatible binary relation on A, then S is a congruence.

Proof. This is proved in the same way that one proves that a
reflexive compatible binary relation on a Maltsev algebra is a congru-
ence, since that argument works equally well with a partial Maltsev
operation.

For the record, the details are as follows. If S ⊆ ρ is reflexive
and compatible, then S is compatible with a partial Maltsev opera-
tion according to Theorem 6.20. Thus, if (a, b) ∈ S, then since S is
reflexive (a, a), (b, b) ∈ S also, so (b, a) = m((a, a), (a, b), (b, b)) ∈ S.
This proves that S is symmetric. If (a, b), (b, c) ∈ S, then (a, c) =
m((a, b), (b, b), (b, c)) ∈ S. This proves that S is transitive, hence a
congruence. �

Theorem 6.23. Let V be a variety with a weak difference term.

(1) If A ∈ V has congruences α′ �� α and β ′ �� β, then

α ∨ β = (α′ ∨ β ′) ◦ α ◦ β ◦ (α′ ∨ β ′).
(2) If A ∈ V has congruences α and β with β

s∼ α ∧ β, then

α ∨ β = α ◦ β ◦ α.
Proof. For item (1), the relation R = (α′ ∨β ′) ◦α ◦β ◦ (α′ ∨β ′) is

an (α′ ∨ β ′)–closed compatible reflexive relation on A whose transitive
closure is α ∨ β. To prove this part of the theorem it suffices to show
that R is a congruence.

Since α′ �� α and β ′ �� β, it follows from Lemma 6.10 and the
transitivity of �� that (α′ ∨ β ′) �� (α ∨ β). In the quotient algebra
A/(α′ ∨ β ′) we have that

ρ := (α ∨ β)/(α′ ∨ β ′) s∼ (α′ ∨ β ′)/(α′ ∨ β ′) = 0

by Theorem 6.19. The relation S := R/(α′∨β ′) is a compatible reflexive
relation of A/(α′∨β ′), and S ⊆ ρ, hence S is a congruence on A/(α′∨
β ′) according to Corollary 6.22. The fact that R is (α′ ∨ β ′)–closed
means that for the natural homomorphism ν : A→ A/(α′ ∨ β ′) : a 7→
a/(α′ ∨ β ′) we have R = ν−1(ν(R)). But ν(R) = R/(α′ ∨ β ′) = S is
a congruence, and the inverse image of a congruence is a congruence.
Hence R is a congruence.
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Item (2) is the special case of item (1) in which α = α′ ≥ β ′ =
α ∧ β. �

Theorem 6.16 follows from the case of Theorem 6.23 (1) where
α′ = β ′ = α ∧ β.

Theorem 6.24. Let V be a variety with a weak difference term. If
A ∈ V has congruences α and β with β

s∼ α∧β and α ≤ γ ≤ α∨β, then
γ = α∨(β∧γ). Hence the map J : I[α∧β, β]→ I[α, α∨β] : x 7→ x∨α
is surjective.

Proof. The hypotheses of Theorem 6.23 (2) are met, so α ∨ β =
α ◦ β ◦ α. Arbitrarily choose (a, b) ∈ γ. Since γ ≤ α ∨ β = α ◦ β ◦ α,
there are elements u, v ∈ A such that

(6.5) a ≡α u ≡β v ≡α b.

This means that u ≡α a ≡γ b ≡α v, so (u, v) ∈ β ∧ (α ∨ γ) =
β ∧ γ. This allows us to strengthen the β–relation in line (6.5) to a
(β ∧ γ)–relation, and in the strengthened form that line indicates that
(a, b) ∈ α∨ (β ∧γ). Since (a, b) was chosen arbitrarily, γ ⊆ α∨ (β ∧γ).
The reverse inclusion follows from the fact that α ≤ γ.

For the final statement of the theorem, note that for any γ ∈ I[α, α∨
β] the element β ∧ γ is in I[α ∧ β, β] and we have proved above that
γ = J(β ∧ γ). �

Theorem 6.25. Let V be a variety with a weak difference term.
Assume that A ∈ V.

(1) If N5, with the labeling indicated in Figure 6.2, appears as a

sublattice of Con(A), then β 6 s∼ β ∧ α.
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Figure 6.2. β 6 s∼ β ∧ α

(2) If D2 appears as a sublattice of Con(A), then no two distinct
congruences in the sublattice are ∞-solvably related.
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Proof. In item (1), we have α ≤ γ ≤ α ∨ β. Therefore, if we had

β
s∼ β ∧ α, then all of the the hypotheses of Theorem 6.24 would be

met. This would force γ = α ∨ (β ∧ γ). But α ∨ (β ∧ γ) = α 6= γ, so

we cannot have β
s∼ β ∧ α.

For item (2), the relation
s∼ restricts to a congruence on D2, which is

a subdirectly irreducible lattice. If the copy of D2 under consideration
is labeled as in Figure 6.3, then the critical intervals are I[µ, ν], I[α, τ ],
and I[δ, θ]. Therefore, if any two distinct elements of this sublattice

are
s∼–related then µ

s∼ ν, α
s∼ τ , and δ

s∼ θ. Assume that this is so
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Figure 6.3.

and choose α′ so that α < α′ ≤ τ and α � α′. By Theorem 6.24 the
maps I[µ, ν]→ I[α, τ ] : x 7→ x ∨ α and I[δ, θ]→ I[α, τ ] : x 7→ x ∨ α are
surjective, so there exist µ′ and δ′ such that µ < µ′ ≤ ν, δ < δ′ < θ
and µ′ ∨ α = α′ = δ′ ∨ α. Since I[µ, µ′] and I[δ, δ′] are perspective
with I[α, α′] we get that µ � µ′ and δ � δ′ from Theorem 3.26 (or
Lemma 6.10).

Claim 6.26. µ′, α, and δ′ and generate a sublattice isomorphic to
D2.

Our argument uses Lemma 5.27 with x = µ′, y = α and z = δ′, as
well as the fact that ν, α and θ generate a copy of D2.

For item (i) of Lemma 5.27,

x ∧ y = µ′ ∧ δ′ ≤ ν ∧ θ ≤ α = y .

For item (ii),

z ∨ (y ∧ x) = δ′ ∨ (α ∧ µ′) = δ′ ∨ µ = α′ = α ∨ µ′ ≥ µ′ = x .

Here we have used the facts that I[µ, µ′] and I[δ, δ′] are perspective up
to I[α, α′], and that δ′ ∨ µ = δ′ ∨ (δ ∨ µ) = δ′ ∨ α = α′.

Item (iii) is similar to (ii). For (iv),

(x ∧ y) ∨ (y ∧ z) = (µ′ ∧ α) ∨ (α ∧ δ′) = µ ∨ δ = α .
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Since x = µ′ 6≤ α = y, the sublattice generated by {µ′, α, δ′} is
isomorphic to D2. This prove the claim.

From the assumption that Con(A) has a sublattice isomorphic to
D2 with ∞-solvable critical interval we have shown that Con(A) has
a sublattice isomorphic to D2 with abelian critical interval. This con-
tradicts Theorem 4.16 (2). �

The rest of the results in this section provide some information
about failures of join semidistributivity in the congruence lattice of an
algebra with a weak difference term.

Lemma 6.27. Assume that V has a weak difference term. If A ∈ V
has congruences α, β and γ satisfying

(1) α ∨ β s∼ α
s∼ α ∨ γ, and

(2) β ∧ γ ≤ α,

then (β ∨ (α ∧ γ)) ∧ (γ ∨ (α ∧ β)) = (α ∧ β) ∨ (α ∧ γ).

Proof. Since β ∧ γ lies below all congruences of interest, we may
factor by it and assume that β ∧ γ = 0.

In the next claim we label some of the congruences in the sublattice
of Con(A) generated by {α, β, γ}, and prove some of the more obvious
relationships between them.

Claim 6.28. Let δ = (α ∧ β) ∨ (α ∧ γ), β̂ = β ∨ δ, γ̂ = γ ∨ δ,

θ = β̂ ∧ γ̂, β ′ = β ∧ θ, and γ′ = γ ∧ θ. Then

(i) δ ≤ α,
(ii) β ∧ δ = β ∧ α and γ ∧ δ = γ ∧ α,

(iii) β
s∼ β ∧ δ and γ

s∼ γ ∧ δ,

(iv) δ ≤ θ ≤ β̂ and δ ≤ θ ≤ γ̂,

(v) β̂
s∼ δ

s∼ γ̂,

(vi) β̂ ∨ α = β ∨ α and γ̂ ∨ α = γ ∨ α, and
(vii) β ′ ∨ δ = θ = γ′ ∨ δ.

Some of these congruences and relationships are indicated in Fig-
ure 6.4.

We omit the proofs of the parts of the claim that concern γ if those
parts are symmetric to the arguments we give for β.

For item (i) of Claim 6.28, note that δ = (α ∧ β)∨ (α ∧ γ) is a join
of two elements below α, so δ ≤ α.

For item (ii), since δ ≤ α we get that β ∧ δ ≤ β ∧ α. On the other
hand, both β and δ are above β ∧ α, so β ∧ δ ≥ β ∧ α.

For item (iii), start with α
s∼ α ∨ β, which holds by assumption

(1) of the theorem. Using the fact that
s∼ is a congruence, meet both
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sides of α
s∼ α ∨ β with β to obtain β ∧ α s∼ β. Applying the result

from (ii) of this claim yields β ∧ δ s∼ β.

For item (iv), the fact that θ = β̂ ∧ γ̂ = (β ∨ δ) ∧ (γ ∨ δ) is a meet

of elements above δ is enough to prove that δ ≤ θ, while θ ≤ β̂ is

immediate from the definition θ = β̂ ∧ γ̂.
For item (v), join the relation β ∧ δ s∼ β from (iii) with δ to obtain

δ
s∼ β ∨ δ = β̂.

For item (vi), β̂ ∨ α = (β ∨ δ)∨ α = β ∨ (δ ∨ α) = β ∨ α, where the
last equality follows from item (i).

For item (vii), use the fact established in (iii) that β
s∼ β ∧ δ, the

fact established in (iv) that δ ≤ θ ≤ β̂ = β ∨ δ, and Theorem 6.24 to
deduce that θ = δ ∨ (β ∧ θ). Since β ′ = β ∧ θ, this yields θ = β ′ ∨ δ.
This completes the proof of Claim 6.28.

By examining the definitions of δ and θ, the reader will verify that
the statement of the next claim is precisely what is asserted in the
statement of this lemma.

Claim 6.29. δ = θ.

We assume instead that δ 6= θ and show that the sublattice of
Con(A) generated by {β ′, γ′, δ} is isomorphic to D2. In order to show
this, we verify that the congruences x = β ′, y = δ, and z = γ′ satisfy the
relations from the presentation of D2 given in Lemma 5.27. Throughout
the argument we will make free use of Claim 6.28.

To establish relation (i) of Lemma 5.27, we have

x ∧ z = β ′ ∧ γ′ ≤ β ∧ γ = 0 ≤ δ = y.
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For relation (ii),

z ∨ (y ∧ x) = γ′ ∨ (δ ∧ β ′)
= (γ ∧ θ) ∨ (δ ∧ (β ∧ θ))
= (γ ∧ θ) ∨ (β ∧ δ)
= (γ ∧ θ) ∨ (γ ∧ δ) ∨ (β ∧ δ)
= γ′ ∨ ((γ ∧ α) ∨ (β ∧ α))
= γ′ ∨ δ
= θ ≥ β ∧ θ = β ′ = x.

The proof that x ∨ (y ∧ z) ≥ z is similar to the one just given. For
relation (iv),

(x ∧ y) ∨ (y ∧ z) = (β ′ ∧ δ) ∨ (δ ∧ γ′)
= ((β ∧ θ) ∧ δ) ∨ (δ ∧ (γ ∧ θ))
= (β ∧ δ) ∨ (γ ∧ δ)
= (β ∧ α) ∨ (γ ∧ α)
= δ = y.

Finally, x = β ′ 6≤ δ = y since β ′ ∨ δ = θ by Claim 6.28 (vii), and we
are assuming that δ 6= θ.

Thus, our assumption that δ 6= θ and Lemma 5.27 together imply
that the sublattice generated by {β ′, γ′, δ} is isomorphic to D2. It fol-
lows from Claim 6.28 (iv) and (v) that I[δ, θ] is an ∞–solvable interval
in this sublattice. This is forbidden by Theorem 6.25, hence Claim 6.29
and the lemma are proved. �

Theorem 6.30. Assume that V has a weak difference term. If
A ∈ V has congruences α, β and γ satisfying

(1) α ∨ β s∼ α
s∼ α ∨ γ, and

(2) β ∧ γ ≤ α,

then C(α ∨ β, α ∨ γ;α) holds.

Proof. As in the proof of Lemma 6.27, we may assume that β∧γ =

0. As in that proof we let δ = (α∧β)∨(α∧γ), β̂ = β∨δ, and γ̂ = γ∨δ.
Claim 6.31. α ∧ β̂ = α ∧ γ̂ = β̂ ∧ γ̂.

We proved in Lemma 6.27 that δ = β̂ ∧ γ̂, so it suffices (by sym-

metry) to prove only that α ∧ β̂ = δ. Both α and β̂ are above δ,
according to Claim 6.28 (i) and (iv) of Lemma 6.27, so we certainly

have α ∧ β̂ ≥ δ. This forces α ∧ β̂ ∈ I[δ, β̂] = I[δ, β ∨ δ]. The perspec-
tive interval I[β ∧ δ, β] = I[β ∧ α, β] is ∞–solvable by assumption, so
Theorem 6.24 guarantees that

α ∧ β̂ = δ ∨ (β ∧ (α ∧ β̂)).
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But we can simplify the expression on the right as follows: δ ∨ (β ∧
(α ∧ β̂)) = δ ∨ (α ∧ (β ∧ β̂)) = δ ∨ (α ∧ β) = δ. This proves the claim.

Claim 6.32. C(β̂, γ̂;α) holds.

It follows from Claim 6.31 that γ̂ ∧ (β̂ ∨ (γ̂ ∧α)) ≤ α, so Claim 6.32
isa direct application of Theorem 2.19 (8).

Claim 6.33. C(α ∨ β, α ∨ γ;α) holds.

It follows from Theorem 2.19 (7) or (8) that C(α, γ̂;α) holds. From

this, Claim 6.32, and Theorem 2.19 (5) we get that C(α∨ β̂, γ̂;α) holds.

We established that α ∨ β̂ = α ∨ β in Claim 6.28 (vi) of Lemma 6.27,
so C(α ∨ β, γ̂;α) holds. Using Theorem 2.19 (3) we finally get that
C(α ∨ β, α ◦ γ̂ ◦ α;α) holds. This claim, and this theorem, will be
established if we show that α ◦ γ̂ ◦α = α∨ γ̂ ( = α∨ γ). For this, meet

both sides of the relation α∨γ s∼ α, which is part of assumption (1) of

the theorem, with the congruence γ̂. The result is that γ̂
s∼ α∧γ̂. From

Theorem 6.23 (2) we conclude that α ◦ γ̂ ◦ α = α ∨ γ̂, as desired. �

There is a special case of the previous theorem that is worth record-
ing.

Corollary 6.34. Assume that V has a weak difference term, that
A ∈ V, and that I is an SD∨-failure in Con(A). If I is ∞–solvable,
then I is abelian.

Proof. An SD∨-failure is a nontrivial interval I = I[α, α∨β] deter-
mined by congruences α, β and γ satisfying α∨β = α∨γ and β∧γ ≤ α.
The assumption that I is∞–solvable means that α

s∼ α∨β (= α∨γ).
This establishes hypothesis (1) of Theorem 6.30. Hypothesis (2) holds
simply because I is an SD∨-failure. Hence we have the conclusion of
Theorem 6.30, that C(α∨β, α∨ γ;α) (equivalently C(α∨β, α∨β;α))
holds. This is precisely what it means for I to be abelian. �

6.3. An Alternative Development

In the preceding section we developed the theory of solvability in
analogy with the theory of solvability for groups, using chains of con-
gruences with abelian factors. In this short section we show that it
would have been possible to developed the theory of solvability in anal-
ogy with the theory of solvability for rings. Namely, we show that the
basic notions of the preceding section, rad,

s∼ and ��, can be defined
in terms of prime congruences.
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Definition 6.35. Let A be an algebra. A congruence θ on A is
semiprime if θ J 1; it is prime if it is semiprime and meet irreducible
in Con(A).

An m-sequence is a sequence σ = (θλ)λ<ω of principal congruences
where [θλ, θλ] ≥ θλ+1 holds for all λ. The m-sequence σ avoids a
congruence θ if θλ 6≤ θ for all λ, otherwise it intersects θ.

Our definitions for “prime” and “semiprime” agree with those from
ring theory. The concept of an m-sequence generalizes the concept of
a multiplicatively closed subset of a commutative ring, or an m-system
in a noncommutative ring. All of these notions are definable in terms
of the centralizer relation.

Observe that if (θλ)λ<ω is an m-sequence, then it is descending,
since θλ ≥ [θλ, θλ] ≥ θλ+1 for all λ.

Theorem 6.36. Let V be a variety with a weak difference term.
Assume that A ∈ V, and θ ∈ Con(A). The following conditions con-
cerning θ are equivalent.

(1) θ is semiprime.
(2) θ is an intersection of prime congruences.
(3) For every principal congruence θ0 6≤ θ there is an m-sequence

σ = (θ0, θ1, . . .) starting at θ0 that avoids θ.
(4) θ is a radical congruence.

Proof. It follows immediately from the definitions that (1) and
(4) are equivalent, so we prove only that (1)=⇒(3)=⇒(2)=⇒(1).

Assume that θ is semiprime and that θ0 6≤ θ. If [θ0, θ0] ≤ θ, then
since [θ0, θ0] � θ0 we get from Lemma 6.10 that

θ = θ ∨ [θ0, θ0] � θ ∨ θ0.

But since θ < θ ∨ θ0, this contradicts the assumption that θ J 1 (i.e.,
that θ is semiprime). Thus it must be that [θ0, θ0] 6≤ θ, and this means
that there is a principal congruence θ1 ≤ [θ0, θ0] such that θ1 6≤ θ. The
same argument applied to θ1 produces a principal congruence θ2 such
that θ2 ≤ [θ1, θ1] and θ2 6≤ θ. Repeating the argument indefinitely
produces an m-sequence (θ0, θ1, . . .) starting at θ0 that avoids θ.

Now suppose that Condition (3) holds for θ. Let θ′ be the intersec-
tion of the prime congruences containing θ. If θ < θ′, then there is a
principal congruence θ0 ≤ θ′ such that θ0 6≤ θ. By Condition (3), there
is an m-sequence σ = (θ0, θ1, . . .) that avoids θ. Extend θ to a con-
gruence π that is maximal for the property that σ avoids π. (The fact
that such a congruence exists uses Zorn’s Lemma, and relies on the fact
that each θi in σ is compact.) We claim that π is a prime congruence.
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To see that it is meet irreducible, assume instead that π = α∧β where
π < α, β. Then by the maximality of π it must be that σ intersects
both α and β, so θi ≤ α and θj ≤ β for some i and j. But then for
k = max(i, j) we have θk ≤ α ∧ β = π, since σ is a descending chain
of congruences, and this contradicts the fact that σ avoids π. To show
that π is semiprime, assume instead that there is a congruence δ such
that π� δ and π < δ. Then the maximality condition on π forces σ to
intersect δ, so for some i we have θi ≤ δ. But now the monotonicity of
the commutator operation implies that

θi+1 ≤ [θi, θi] ≤ [δ, δ] ≤ π.

This contradicts the fact that σ avoids π. This concludes the proof
that π is prime. Since π extends θ, and θ′ is the intersection of prime
congruences containing θ, it follows that θ′ ≤ π. But now we have the
contradiction that θ0 ≤ θ′ ≤ π while π avoids σ = (θλ)λ<ω. This final
contradiction proves that θ′ = θ, and hence that Condition (2) holds.

Finally, assume that Condition (2) holds. Then θ =
⋂
i∈I πi where

each πi is a prime congruence. If θ � δ, then (since θ ≤ πi) we get
πi � πi ∨ δ for each i. Since each πi is semiprime we deduce that
πi = πi ∨ δ, or that δ ≤ πi for all i. Hence δ ≤ ⋂i∈I πi = θ. This shows
that θ� δ implies that θ = δ, so θ J 1. Hence Condition (1) holds. �

Corollary 6.37. Let V be a variety with a weak difference term.
Assume that A ∈ V has congruences α and β.

(1) rad(α) equals the intersection of the prime congruences con-
taining α.

(2) α
s∼ β if and only if α and β are contained in the same prime

congruences.
(3) α��β if and only if α ≤ β and every m-sequence that intersects

β also intersects α.

Proof. Item (1) follows from the fact, proved in Theorem 6.36,
that the radical congruences are exactly the intersections of prime con-
gruences. Item (2) follows from (1) and the fact that α

s∼ β if and only
if rad(α) = rad(β).

For item (3), assume that α��β and that the m-sequence σ inter-
sects β. If σ avoids α, then α can be extended to a prime π that σ
avoids, as in the proof of Theorem 6.36 (3)=⇒(2). The prime π cannot
contain β since σ avoids π but intersects β. Therefore π contains α
and not β. Since α��β, this contradicts Item (2) of this corollary. For
the other direction, assume that α 6��β. Then, since α ≤ β, Item (2)
guarantees that there is a prime π containing α and not containing
β. If θ0 is a principal congruence satisfying θ0 ≤ β and θ0 6≤ π, then
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Theorem 6.36 guarantees the existence of an m-sequence starting at θ0

and avoiding π since the prime π is semiprime. This m-sequence also
avoids α since α ≤ π, but it does not avoid β since θ0 ≤ β. Thus (3)
holds. �



CHAPTER 7

Ordinary Congruence Identities

In this chapter we will prove that a variety satisfies a nontrivial
lattice identity as a congruence identity if and only if it satisfies an
idempotent Maltsev condition that fails in the variety of semilattices.
In view of the results of Chapter 5, this shows that the class of varieties
that satisfy a congruence identity is definable by a Maltsev condition
(for example, the Maltsev condition of Theorem 5.28).

7.1. A Rank for Solvability Obstructions

The congruence identity that we describe depends on the number
of variables in a Hobby–McKenzie term for the variety, so let us now fix
that arity. We assume in this chapter that V is a variety with a fixed
Hobby–McKenzie term F (x1, . . . , xn), and we let N = {1, 2, . . . , n}.
By Corollary 6.3, V also has a weak difference term, so we are free to
use the results of Chapter 6 in this chapter.

Definition 7.1. If I[δ, θ] is a solvability obstruction and T is a
tolerance, then T separates I := I[δ, θ] if T ⊆ θ and T 6⊆ δ. We write
I[δ, θ]T or IT to refer to the obstruction I in a manner that indicates
that T separates I.

If f and g are m-ary terms, then IT supports the local equation
f(x1, . . . , xm) ≈IT g(x1, . . . , xm) if f(x1, . . . , xm) ≡δ g(x1, . . . , xm)
holds whenever all xi ∈ {a, b} for each (a, b) ∈ T .

Definition 7.2. Assume that A ∈ V, that I = I[δ, θ] is a solvabil-
ity obstruction, and that T is a tolerance that separates I. The rank
of IT is the set

Rank(IT ) := {U ⊆ N | FU(x, y) ≈IT x}.

Lemma 7.3. Assume that A ∈ V and that IT := I[δ, θ]T is a sepa-
rated solvability obstruction in Con(A). Then

(1) N ∈ Rank(IT ).
(2) ∅ 6∈ Rank(IT ).
(3) Rank(IT ) is a closed subset of B(F ) that is not a lattice filter.

146
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Proof. For (1), N ∈ Rank(IT ) if and only if

F (x, x, . . . , x) = FN(x, y) ≈IT x.
That this is true follows from the fact that F is idempotent.

For (2), if ∅ ∈ Rank(IT ), then

y = F (y, y, . . . , y) = F∅(x, y) ≈IT x.
This statement means that y ≡δ x for all (x, y) ∈ T , contradicting the
fact that T separates I[δ, θ]. Thus ∅ 6∈ Rank(IT ),

To prove (3), notice that if V |= FU(x, y) ≈ FV (x, y), then U ∈
Rank(IT ) if and only if V ∈ Rank(IT ). Therefore Rank(IT ) is a closed
subset of B(F ). It is not a lattice filter since, by parts (2) and (3), it
is proper and nonempty, and B(F ) has no closed, proper, nonempty
lattice filter. �

A certain configuration involving a pair of separated solvability ob-
structions forces one obstruction to have rank that properly contains
the rank of the other obstruction. We identify this configuration now,
and introduce a shorthand notation for it.

Definition 7.4. I[µ, ν]S ; I[δ, θ]T means that

(a) S ∩ (δ : T ) ⊆ µ,
(b) T ∩ (S ◦ (T ∩ δ) ◦ (S ∩ µ)) ⊆ δ, and
(c) S ∩ ((T ∩ δ) ◦ (S ∩ µ) ◦ (T ∩ δ)) ⊆ µ.

The three conditions of this definition describe a property of the
tolerance

T := T ∩ (S ◦ (T ∩ δ) ◦ S).

This tolerance consists of all pairs (c, d) for which there exist elements a
and b related as in the quadrangle in Figure 7.1. Condition (a) implies

r r
r ra b

c d
T

T ∩ δ

S S

Figure 7.1.

that C(S, T ; δ) fails (since S 6⊆ µ). An S, T–matrix

[
a b
c d

]
witnessing

this failure produces a pair (c, d) ∈ T with (c, d) 6∈ δ. Thus, if Condition
(a) holds, the tolerance T ⊆ T also separates I[δ, θ]. Condition (b)
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implies that if a, b, c and d are any four elements related as in the
above quadrangle, and (b, d) ∈ µ, then (c, d) ∈ δ. If this happens, and
Condition (c) holds, then (a, c) ∈ µ. In particular, if I[µ, ν]S ; I[δ, θ]T ,
then there will exist quadrangles related as above with (c, d) 6∈ δ, but
any such quadrangle must have (a, c), (b, d) 6∈ µ.

Lemma 7.5. Assume that A ∈ V, that IS = I[µ, ν]S and JT =
I[δ, θ]T are separated solvability obstructions in Con(A), and that IS ;

JT . If S ⊆ S also separates I[µ, ν] and T = T ∩ (S ◦ (T ∩ δ) ◦ S), then

(1) IS ; JT , and
(2) T separates I[δ, θ].

Proof. For item (1), suppose that S ⊆ S and that S separates I.
Then the three conditions of the definition of ; hold with S in place of
S, because the symbol S appears only on the left side of each inclusion
and the left side of each inclusion is an expression that is monotone in
S with respect to inclusion.

Item (2) follows from IS ; JT as we explained in the remarks
preceding the statement of this lemma (using S instead of S). �

Lemma 7.6. Assume that A ∈ V, that IS = I[µ, ν]S and JT =
I[δ, θ]T are separated solvability obstructions in Con(A), and that IS ;

JT . Let T = T ∩ (S ◦ (T ∩ δ) ◦ S). If f(x, y, z) is an idempotent term
of A, and IS supports the local equation f(x, y, y) ≈IS x, then both of
the local equations

f(x, x, y) ≈JT x and f(x, y, x) ≈JT x
are supported by JT .

Proof. The fact that the tolerance T := T ∩ (S ◦ (T ∩ δ) ◦ S)
separates J follows from Condition (a) defining the relation IS ; JT ,
as we remarked prior to the statement of Lemma 7.5 (or, it follows
from Lemma 7.5 (2)). Now, to prove this lemma, it suffices to show
that if IS supports the local equation f(x, y, y) ≈IS x, then JT supports
the local equation f(x, x, y) ≈JT x. The same argument applied to
f ′(x, y, z) = f(x, z, y) shows that if the local equation f(x, y, y) ≈IS x
is supported by IS, then f(x, y, x) ≈JT x is supported by JT .

To show that JT supports the local equation f(x, x, y) ≈JT x, choose

a pair (0, 1) ∈ T = T ∩ (S ◦ (T ∩ δ) ◦ S). There exist elements u and
v such that 0 ≡S u ≡T∩δ v ≡S 1. The relationships between 0, 1, u
and v are described in the left hand square in Figure 7.2. The right
hand square of this figure describes the relationships between four other
elements.
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r r

r r

r r

r r

0

1

u

v

S

S

T T ∩ δ

f(0, 0, 0)

f(0, 0, 1)

f(0, u, u)

f(0, u, v)

S ∩ µ

S

T T ∩ δ

Figure 7.2.

Let’s convince ourselves that the information indicated in the right
hand square of Figure 7.2 is correct. First,

f(0, 0, 0) ≡T f(0, 0, 1)

follows from the fact that (0, 0), (0, 1) ∈ T . Second,

f(0, u, u) ≡T∩δ f(0, u, v)

follows from the fact that (0, 0), (u, u), (u, v) ∈ T ∩ δ. Third,

f(0, 0, 1) ≡S f(0, u, v) and f(0, 0, 0) ≡S f(0, u, u)

follow from (0, 0), (0, u), (1, v) ∈ S, Finally,

f(0, 0, 0) ≡µ f(0, u, u)

since both sides are µ-related to 0: the left hand side equals 0 since f
is idempotent and the right hand side is µ-related to 0 since (0, u) ∈ S
and I[µ, ν]S supports f(x, y, y) ≈I[µ,ν]S x.

The relations that we have just verified imply that

(f(0, 0, 1), f(0, 0, 0)) ∈ T ∩ (S ◦ (T ∩ δ) ◦ (S ∩ µ)).

By Condition (b) of the definition of IS ; JT (Definition 7.4) this
implies that

f(0, 0, 1) ≡δ f(0, 0, 0) (= 0)

holds for any pair (0, 1) ∈ T . Hence JT supports the local equation
f(x, x, y) ≈JT x, and the proof is complete. �

Lemma 7.7. Assume that A ∈ V, that IS = I[µ, ν]S and JT =
I[δ, θ]T are separated solvability obstructions in Con(A), and that IS ;

JT . Let T = T ∩ (S ◦ (T ∩ δ) ◦ S). If f(x, y, z) is an idempotent term
of A, and IS supports the local equations

f(x, x, y) ≈IS x and f(x, y, x) ≈IS x,
then f(x, y, y) ≈JT x is supported by JT .
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Proof. As in the last proof, choose (0, 1) ∈ T = T∩(S◦(T∩δ)◦S),
and let u and v denote elements of A for which 0 ≡S u ≡T∩δ v ≡S 1. As
before, relationships between 0, 1, u and v are expressed in Figure 7.3.
In this proof we will be interested in the relationships between some

r r

r r

0

1

u

v

S

S

T T ∩ δ

Figure 7.3.

of the elements depicted in Figure 7.4. In this figure each element has

r r r r
r r r r
r r r r
r r r rS ∩ µ T ∩ δ S

S T ∩ δ S

S T ∩ δ S

S T ∩ δ S
S

T ∩ δ

S ∩ µ

S

T ∩ δ

S

S

T ∩ δ

S

S

T ∩ δ

S

f(0, 0, 0) f(0, 0, u) f(0, 0, v) f(0, 0, 1)

f(0, 1, 0)

f(0, v, 0)

f(0, u, 0)

f(0, 1, 1)

f(0, v, 1)

f(0, u, 1)

Figure 7.4.

the form f(0, a, b). As one moves row-by-row from top to bottom the
value of a changes from 0 to u to v to 1. As one moves column-by-
column from left to right the value of b changes from 0 to u to v to
1. All but two of the indicated relations follow from (0, u), (1, v) ∈ S,
(u, v) ∈ T ∩δ, and that S and T ∩δ are compatible. The exceptions are
the two instances of S ∩ µ in the upper left hand corner of Figure 7.4.
The relevant pairs are clearly S-related, since (0, u) ∈ S and S is
compatible, so we must justify the claim that

f(0, u, 0) ≡µ f(0, 0, 0) ≡µ f(0, 0, u).
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For this one can use the facts that I[µ, ν]S supports

f(x, y, x) ≈I[µ,ν]S x = f(x, x, x) ≈I[µ,ν]S f(x, x, y),

that (0, u) ∈ S, and that S is a tolerance. The curved lines in the figure
represent T -relations, and all follow from (0, 1) ∈ T and the fact that T
is a tolerance. We must prove that f(0, 1, 1) ≡δ 0. We will accomplish
this by showing that the curved lines of Figure xxx that appear across
the top and along the right hand side represent T ∩ δ-relations, and
not merely T -relations.

We begin our work by examining the top row of Figure 7.4. Follow-
ing the straight line from right to left we see that (f(0, 0, 1), f(0, 0, 0)) ∈
S◦(T ∩δ)◦(S∩µ), while following the curved path we see that these el-
ements are related by T . By Condition (b) of the definition of IS ; JT
we get that (f(0, 0, 1), f(0, 0, 0)) ∈ δ. We can apply this information to
the rectangle formed from the leftmost and rightmost elements of the
first two rows, as shown in Figure 7.5. Condition (b) of the definition

r r r r
r r r r

S ∩ µ S

T

T ∩ δ
f(0, 0, 0) f(0, 0, 1)

f(0, u, 0) f(0, u, 1)

Figure 7.5.

of IS ; JT can be applied again to show that

(f(0, u, 1), f(0, u, 0)) ∈ T ∩ (S ◦ (T ∩ δ) ◦ (S ∩ µ)) ⊆ δ,

so the bottom curved line in this figure represents a δ-relation. Now
we see that the two elements on the right hand side are related by
S∩((T ∩δ)◦(S∩µ)◦(T ∩δ)). Condition (c) of the definition of IS ; JT
asserts that S∩((T∩δ)◦(S∩µ)◦(T∩δ)) ⊆ µ, so ((f(0, 0, 1), f(0, u, 1)) ∈
µ.

Returning to Figure 7.4, we examine the four elements of the right
hand side:

f(0, 0, 1) ≡S∩µ f(0, u, 1) ≡T∩δ f(0, v, 1) ≡S f(0, 1, 1),

and f(0, 0, 1) ≡T f(0, 1, 1). Hence

(f(0, 1, 1), f(0, 0, 1)) ∈ T ∩ (S ◦ (T ∩ δ) ◦ (S ∩ µ)) ⊆ δ.
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We have shown that the curved lines across the top and down the right
side are δ-relations, so we have

f(0, 0, 0) ≡δ f(0, 0, 1) ≡δ f(0, 1, 1).

Since f is idempotent, this proves that f(0, 1, 1) ≡δ f(0, 0, 0) = 0, as
desired. �

Next is the promised result showing that instances of ; are related
to proper increases in rank.

Theorem 7.8. Assume that A ∈ V, that IS = I[µ, ν]S and JT =
I[δ, θ]T are separated solvability obstructions in Con(A), and that IS ;

JT . If T = T ∩ (S ◦ (T ∩ δ) ◦ S), then Rank(IS) $ Rank(JT ). In fact,

(1) if U ∈ Rank(IS) and U ⊆ V ⊆ N , then V ∈ Rank(JT ), and
(2) if U, V ∈ Rank(IS) and U ∪ V = N , then U ∩ V ∈ Rank(JT ).

Proof. It follows from Lemma 7.5 that T separates J , so Rank(JT )
is defined. We will prove that (1) and (2) hold first, and then we will
deduce that Rank(IS) $ Rank(JT ). The following notation will be
helpful: Given a partition of N = {1, . . . , n} into three sets P,Q and
R, one or two of which may be empty, we write FP/Q/R(x, y, z) to denote
the term that results from substituting x for xi in the Hobby–McKenzie
term F (x1, . . . , xn) when i ∈ P , y for xi when i ∈ Q, and z for xi when
i ∈ R. Any FP/Q/R(x, y, z) is idempotent, since F is.

We begin the proof of (1). Assume that U ∈ Rank(IS) and U ⊆
V ⊆ N . PartitionN as P/Q/R with P = U,Q = V−U and R = N−V .
The fact that U ∈ Rank(IS) means precisely that the local equation

FU/(V − U)/(N − V )(x, y, y) = FU (x, y) ≈IS x
is supported by IS. From Lemma 7.6 we get that JT supports

FV (x, y) = FU/(V − U)/(N − V )(x, x, y) ≈JT x.
Hence V ∈ Rank(JT ).

Now we prove (2). Assume that U, V ∈ Rank(IS) and U ∪ V = N ,
Partition N as P/Q/R with P = U ∩ V,Q = U − V and R = V − U .
The fact that U, V ∈ Rank(IS) translates into

F(U ∩ V )/(U − V )/(V − U)(x, x, y) = FU (x, y) ≈IS x
and

F(U ∩ V )/(U − V )/(V − U)(x, y, x) = FV (x, y) ≈IS x,
so Lemma 7.7 proves that

FU∩V (x, y) = F(U ∩ V )/(U − V )/(V − U)(x, y, y) ≈JT x
is supported by JT . Hence U ∩ V ∈ Rank(JT ).
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Now we use (1) and (2) to prove that Rank(IS) $ Rank(JT ). It fol-
lows from (1) that U ∈ Rank(IS) implies U ∈ Rank(JT ), so we certainly
have Rank(IS) ⊆ Rank(JT ). Suppose that Rank(IS) = Rank(JT ).
Then from (1) we get that Rank(IS) is an order filter in B(F ). If
U, V ∈ Rank(IS) and U 6⊆ V , then since V is the intersection of the
(n− 1)–element sets that contain it there must be an (n− 1)–element
set W ⊇ V such that U 6⊆ W . For this set W we have W ∈ Rank(IS)
and U ∪W = N , so by (2) we get that U ∩W ∈ Rank(JT ) = Rank(IS).
Since U ∩W is a proper subset of U , and is in Rank(IS), this shows
that if U is not the least element of Rank(IS), then U is not minimal
under inclusion in Rank(IS). It follows that Rank(IS) is a principal
order filter, hence a lattice filter in B(F ). But by Lemma 7.3 (3) the
set Rank(IS) is not a lattice filter, hence Rank(IS) = Rank(JT ) is im-
possible. This completes the proof that Rank(IS) $ Rank(JT ). �

Since an instance of the ;–relation leads to a proper increase in
rank, and there are only finitely many ranks, one expects a bound
on the length of ;–sequences. That bound is provided by the next
theorem.

Theorem 7.9. Assume that A ∈ V. Con(A) does not contain a
;–sequence of separated solvability obstructions

I0
S0 ; I1

S1 ; I2
S2 ; · · ·; IkSk

of length k ≥ 2n− 4.

Proof. Suppose otherwise, and that I j = I[µj, νj]. Define toler-

ances S
j ⊆ Sj according to the rules

(i) S
0

:= S0, and

(ii) S
j+1

:= Sj+1 ∩ (S
j ◦ (Sj+1 ∩ µj+1) ◦ Sj).

Now consider two sequences of claims:

(a)j Ij
S
j ; Ij+1

Sj+1 .

(b)j S
j

separates Ij.

Claims (a)0 and (b)0 hold since I0
S0 ; I1

S1 and S
0

= S0 separates
I0. Claim (a)j implies Claim (b)j+1 by Lemma 7.5 (2). Claim (b)j

implies Claim (a)j by Lemma 7.5 (1) and the facts that S
j ⊆ Sj and

IjSj ; Ij+1
Sj+1. By induction, Claims (a)j and (b)j hold for all j. Applying

Theorem 7.8 to Claim (a)j yields that Rank(I j
S
j) $ Rank(Ij+1

S
j+1) for

each j < k. This shows that

I0
S0 ; I1

S1 ; I2
S2 ; · · ·; IkSk
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implies that

Rank(I0

S
0) $ Rank(I1

S
1) $ Rank(I2

S
2) $ · · · $ Rank(Ik

S
k)

where the tolerance S
j

is contained in Sj yet still separates I j.
Let U j := Rank(Ij

S
j). In the last paragraph we showed that

U0 $ U1 $ U2 $ · · · $ Uk.
Other properties of the sets U j include:

• Each U j is a closed subset of B(F ) that is not a lattice filter
(by Lemma 7.3 (3)).
• N ∈ U j and ∅ 6∈ U j for all j (by Lemma 7.3 (1) and (2)).
• U j+1 contains the order filter generated by U j (by Lemma 7.8 (1)).
• U j+1 contains the intersections of comaximal pairs from U j (by

Lemma 7.8 (2)).

We now argue that such a sequence of sets cannot exist if k ≥ 2n− 4.
First, U0 contains N , is closed, and is not a lattice filter, so either U 0

contains a set of size ≤ n−2 or else at least 2 sets of size n−1. In either
case, since U1 contains the order filter generated by U 0 and contains
the intersections of comaximal pairs in U 0, the set U1 properly contains
an order filter generated by a set U of size n − 2. Now suppose that
for some r ≥ 0 the set U 2r+1 contains a principal order filter generated
by a set U of size ≤ n − 2 − r. If U is not empty, then there is
some W ∈ U2r+1 such that W 6⊇ U (since U 2r+1 is closed). The set
V := U ∪ (N −W ) is in U 2r+1 since V ⊇ U , and V ∪W = N since
V ⊇ N − W . Thus V ∩ W = U ∩ W ∈ U 2r+2 = U2(r+1). Since
W 6⊇ U , the set U ∩W has size ≤ n − 2− (r + 1). The set U 2(r+1)+1

contains the order filter generated by U ∩W . By induction we see that
for all r the set U 2r+1 contains a principal order filter generated by a
set of size ≤ n − 2 − r. For r = n − 3 we get that U 2n−5 contains a
principal order filter generated by a set U ′ of size 1. The containment
is proper, since U2n−5 is not a lattice filter. If W ′ ∈ U2n−5 does not
contain U ′, then as above we get that V ′ := U ′ ∪ (N −W ′) ∈ U2n−5

and V ′ ∩ W ′ = ∅ ∈ U2n−4 ⊆ Uk. This is a contradiction, since no
U j contains the empty set. This completes the proof that there is no
sequence

I0
S0 ; I1

S1 ; I2
S2 ; · · ·; IkSk

with k ≥ 2n− 4. �
Now that we have shown that there is a bound on the length of

;–sequences in congruence lattices of algebras in V, our next goal is
to determine how to recognize ;-related intervals lattice-theoretically.
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Lemma 7.10. Assume that A ∈ V, and that IS = I[µ, ν]S and
JT = I[δ, θ]T are separated solvability obstructions in Con(A). Choose
and fix congruences δ′ and µ′ satisfying T ∩ δ ⊆ δ′ ⊆ CgA(T ) and
S ∩ µ ⊆ µ′ ⊆ CgA(S). If the conditions

(d) CgA(T ) ∩ CgA(S) ⊆ δ′ ∨ µ′,
(e) T ∩ (δ′ ∨ µ′) ⊆ δ, and
(f) S ∩ (δ′ ∨ µ′) ⊆ µ

are satisfied, then the conditions

(b) T ∩ (S ◦ (T ∩ δ) ◦ (S ∩ µ)) ⊆ δ, and
(c) S ∩ ((T ∩ δ) ◦ (S ∩ µ) ◦ (T ∩ δ)) ⊆ µ

from Definition 7.4 are also satisfied.

Proof. Condition (c) follows immediately from Condition (f), since
T ∩ δ ⊆ δ′ and S ∩ µ ⊆ µ′.

We will prove that (b) follows from (d) and (e) by showing that
T ∩ (S ◦ (T ∩ δ) ◦ (S ∩µ)) ⊆ T ∩ (δ′ ∨µ′). Choose (c, d) ∈ T ∩ (S ◦ (T ∩
δ)◦(S∩µ)). There exist a and b such that c ≡S a ≡T∩δ b ≡S∩µ d, as
shown in Figure 7.6. The pair (c, b) belongs to S ◦(T ∩δ) ⊆ CgA(S)◦δ′

r r
r ra b

c dT

T ∩ δ

S S ∩ µ

Figure 7.6.

and also to T ◦ (S ∩ µ) ⊆ CgA(T ) ◦ µ′. Using Theorem 5.28 (2) (to
go from the first line below to the second) and Condition (d) of this
theorem we get that

(c, b) ∈ (CgA(T ) ◦ µ′) ∩ (CgA(S) ◦ δ′)
⊆ ((CgA(T ) ∨ δ′) ∧ (CgA(S) ∨ µ′)) ∨ δ′ ∨ µ′
≤ (CgA(T ) ∧ CgA(S)) ∨ δ′ ∨ µ′
≤ δ′ ∨ µ′.

(Here we used the facts that CgA(T ) ⊇ δ′ and CgA(S) ⊇ µ′ to replace
(CgA(T ) ∨ δ′) ∧ (CgA(S) ∨ µ′) by CgA(T ) ∧ CgA(S).) Hence c ≡δ′∨µ′
b ≡µ′ d, so (c, d) ∈ T ∩(δ′∨µ′). Since (c, d) ∈ T ∩(S ◦(T ∩δ)◦(S∩µ))
was chosen arbitrarily, we get that

T ∩ (S ◦ (T ∩ δ) ◦ (S ∩ µ)) ⊆ T ∩ (δ′ ∨ µ′).
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With this and Condition (e) we get Condition (b). This completes the
proof. �

The following lemma concerns the behavior of the J-relation in va-
rieties with a weak difference term, so this lemma could have appeared
in Chapter 6. It appears here instead because its primary function is
to aid in the proof of the succeeding lemma, which further simplifies
the task of recognizing some instances of the ; relation.

Lemma 7.11. Let U be a variety with a weak difference term, A ∈
U , and I[δ, θ]T a separated solvability obstruction in Con(A).

(1) (δ : T ) is the largest congruence ξ ∈ Con(A) such that ξ ≥ δ
and ξ ∩ T ⊆ δ.

(2) (δ : T ) is a radical congruence.
(3) If ρ is a radical congruence and ν 6≤ ρ, then ν ∧ ρ J ν.

Proof. Recall that (δ : T ) is defined to be the largest congruence
ξ such that C(ξ, T ; δ) holds, so in particular C((δ : T ), T ; δ) holds. If
T ′ := (δ : T ) ∩ T , then the monotonicity of the centralizer relation
guarantees that C(T ′, T ′; δ) holds. If T ′′ := δ ◦ T ′ ◦ δ is the δ-closure
of T ′, then Lemma 6.7 proves that T ′′ is a congruence containing δ
for which C(T ′′, T ′′; δ) holds. Therefore δ � T ′′ ⊆ CgA(T ∪ δ) ⊆ θ,
which (since I[δ, θ] is a solvability obstruction) forces T ′′ = δ. Hence
(δ : T ) ∩ T = T ′ ⊆ T ′′ = δ, proving (δ : T ) is one of the congruences
above δ whose intersection with T is contained in δ.

Now suppose that ξ is any congruence above δ whose intersection
with T is contained in δ. These properties of ξ may be used to show
that

T ∩ (ξ ◦ (T ∩ δ) ◦ ξ) ⊆ T ∩ ξ ⊆ δ.

By Theorem 2.19 (7) it follows that C(ξ, T ; δ), or ξ ≤ (δ : T ). This
proves item (1).

For item (2) assume instead that (δ : T ) � α ≤ 1 for some
congruence α. Let T ′ = α∩T . Since C(α, α; (δ : T )) holds, we also have
C(T ′, T ′; (δ : T )) by monotonicity of the centralizer. We will derive that
C(T ′, T ′; δ) holds using Theorem 2.19 (4). To do this we need to prove
that T ′ ∩ (δ : T ) = T ′ ∩ δ. The inclusion ⊇ follows from (δ : T ) ⊇ δ,
while the inclusion ⊆ follows from T ′∩(δ : T ) ⊆ T ∩(δ : T ) ⊆ δ. Hence
C(T ′, T ′; δ) holds indeed. Now, using an argument like the one in the
first paragraph of this proof, this contradicts the fact that I[δ, θ] is a
solvability obstruction unless T ′ ⊆ δ. But then α is a congruence above
δ for which α ∩ T = T ′ ⊆ δ, so by item (1) we get that α ≤ (δ : T ).
This proves that (δ : T ) J 1, and therefore that (δ : T ) is a radical
congruence.
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For item (3), if ν 6≤ ρ, then we certainly have (ν ∧ ρ) < ν. Given
any λ satisfying (ν ∧ ρ) � λ ≤ ν we may join with ρ to obtain
ρ � (ρ ∨ λ) ≤ (ρ ∨ ν), according to Lemma 6.10 (1). Since ρ J 1, it
follows that λ ≤ ρ. Since λ ≤ ν as well, we must have λ ≤ (ν ∧ ρ).
This proves that (ν ∧ ρ) J ν. �

Because of Lemma 7.11 (1), we may refer to (δ : T ) as the pseu-
docomplement of T over δ when I[δ, θ]T is a separated solvability
obstruction.

The following set of criteria for producing ;-related intervals is
simpler than the definition of ; or the criteria of Lemma 7.10, but is
still strong enough for all of our intended applications.

Lemma 7.12. Suppose that I[µ, ν]S and I[δ, θ]T are separated solv-
ability obstructions in Con(A). If

(d)’ CgA(S) ∩ CgA(T ) ⊆ (CgA(S) ∧ (δ : T )) ∨ (CgA(T ) ∧ (δ : T ))
and

(g) S ∩ µ = S ∩ (δ : T ),

then I[µ, ν]S ; I[δ, θ]T .
In particular, assume that I[δ, θ]T is any separated solvability ob-

struction, ν 6≤ (δ : T ), and µ := ν∧(δ : T ). Then I[µ, ν]ν is a separated
solvability obstruction, and if ν ∩CgA(T ) ⊆ µ then I[µ, ν]ν ; I[δ, θ]T .

Proof. Assume that (d)’ and (g) hold. We will argue that Con-
dition (a) of Definition 7.4 holds, and Conditions (d), (e) and (f) of
Lemma 7.10 all hold in the case where δ′ = CgA(T ) ∩ (δ : T ) and
µ′ = CgA(S) ∩ (δ : T ). This choice for δ′ satisfies the required con-
dition T ∩ δ ⊆ δ′ ⊆ CgA(T ) because T ⊆ CgA(T ) and δ ⊆ (δ : T ).
The choice for µ′ satisfies the condition S ∩ µ ⊆ µ′ ⊆ CgA(S) because
S ⊆ CgA(S), while S ∩ µ ⊆ (δ : T ) is part of assumption (g).

From Condition (g) we get S∩ (δ : T ) = S∩µ ⊆ µ as Condition (a)
requires.

Condition (d)’ is simply Condition (d) of Lemma 7.10 restricted to
the case where δ′ = CgA(T ) ∩ (δ : T ) and µ′ = CgA(S) ∩ (δ : T ).

Condition (e) asserts that T ∩ (δ′ ∨ µ′) ⊆ δ. For this, observe
that δ′ ∨ µ′ ≤ (δ : T ) from our choice of primed congruences, so from
Lemma 7.11 (1) we get that T ∩ (δ′ ∨ µ′) ⊆ T ∩ (δ : T ) ⊆ δ.

Condition (f) asserts that S ∩ (δ′ ∨ µ′) ⊆ µ. According to the
previous paragraph we have δ′ ∨ µ′ ≤ (δ : T ). Together with (g), this
yields S ∩ (δ′ ∨ µ′) ⊆ S ∩ (δ : T ) = S ∩ µ ⊆ µ.

For the second paragraph of the lemma statement, assume that
I[δ, θ]T is any separated solvability obstruction. If ν 6≤ (δ : T ) and
µ := ν ∧ (δ : T ), then Lemma 7.11 (2) and (3) prove that I[µ, ν] is a
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solvability obstruction. It is certainly separated by S := ν. To see that
(d)’ holds under the assumption ν ∩ CgA(T ) ⊆ µ, observe that since
S = ν we have

CgA(S) ∩ CgA(T ) = ν ∩ CgA(T )
⊆ µ (by the assumption)
:= ν ∩ (δ : T )
= CgA(S) ∩ (δ : T )
⊆ (CgA(S) ∩ (δ : T )) ∨ (CgA(T ) ∩ (δ : T )).

For (g), S ∩ µ = ν ∩ µ = µ := ν ∩ (δ : T ) = S ∩ (δ : T ). �

7.2. Congruence Identities

The first theorem of this section shows that solvability obstructions
of minimal rank cannot be contained in failure of the distributive law.
It is pretty easy to combine this with our bound on the length of ;-
sequences to derive a nontrivial congruence identity, which is something
that we will do in Theorem 7.15.

Theorem 7.13. Assume that A ∈ V and that JT := I[δ, θ]T is a
separated solvability obstruction in Con(A). If α, β, and γ are congru-
ences on A such that

(α ∧ β) ∨ (α ∧ γ) ≤ δ < θ ≤ α ∧ (β ∨ γ),

then there is a separated solvability obstruction IS that is a subinterval
of either I[α ∧ β, β] or I[α ∧ γ, γ] such that IS ; JT .

Proof. We will apply Lemma 7.12. The pseudocomplement of T
over δ cannot lie above both β and γ, for if it did we would have

T ⊆ θ ≤ β ∨ γ ≤ (δ : T ),

which is in conflict with the properties T ∩ (δ : T ) ⊆ δ and T 6⊆ δ. We
may therefore assume that γ 6≤ (δ : T ). If µ := γ ∧ (δ : T ), then the
second paragraph of the statement of Lemma 7.12 proves that I[µ, γ]
is a solvability obstruction. Since α ∧ γ ≤ δ ≤ (δ : T ), we have
α ∧ γ ≤ γ ∧ (δ : T ) = µ, so I[µ, ν] is contained in I[α ∧ γ, γ]. Using
the second paragraph of the statement of Lemma 7.12 again we obtain
from

γ ∩ CgA(T ) ≤ γ ∩ (α ∧ (β ∨ γ)) = α ∧ γ ≤ µ

that I[µ, ν]ν ; I[δ, θ]T . �
Corollary 7.14. Assume that A ∈ V, and that Con(A) has a

sublattice of congruences labeled as in Figure 7.7. If JT is a separated
solvability obstruction in I[β, α], then there is a separated solvability
obstruction IS contained in I[σ, γ] such that IS ; JT .
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Proof. The hypotheses of Theorem 7.13 are met, since (α ∧ β) ∨
(α ∧ γ) = β ∨ σ = β ≤ δ < θ ≤ α = α ∧ (β ∨ γ). Therefore there is
a separated solvability obstruction IS contained in either I[α ∧ β, β] =
I[β, β] or I[α ∧ γ, γ] = I[σ, γ] such that IS ; JT . The first of these
intervals is trivial, so IS must be a subinterval of the second one. �

Theorem 7.15. Let V be a variety. The following conditions are
equivalent.

(1) V satisfies a nontrivial congruence identity.
(2) V satisfies an idempotent Maltsev condition that fails in the

variety of semilattices.
(3) There exists ` < ω such that the lattice N`+5, depicted in Fig-

ure 7.8, cannot be embedded into Con(A) for any A ∈ V.
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Figure 7.8. The lattice N`+5

Proof. If V satisfies a nontrivial congruence identity, ε, then any
variety satisfying the same idempotent Maltsev conditions as V must
also satisfy ε, by the Pixley-Wille algorithm. But Ralph Freese and
J. B.Nation proved in [20] that the variety of semilattices satisfies no
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nontrivial congruence identity. Therefore V satisfies an idempotent
Maltsev condition that fails in the variety of semilattices.

Assume that (2) holds. Then V has a Hobby–McKenzie term F
of arity n for some n < ω. We shall argue that for ` = 2n − 4 the
lattice N`+5 cannot be embedded into Con(A) for any A ∈ V. The
interval I[σ`, τ`] contains a sublattice {σ`, α, β, γ`, τ`} that is isomorphic
to N5, so this interval is nonmodular. By Theorem 6.16, it follows that
I[σ`, τ`] is not ∞–solvable. Therefore, by Theorem 6.14, this interval
contains a solvability obstruction I[µ`, ν`]. Choose a tolerance S` that
separates this interval (e.g., S` = ν`). By Corollary 7.14, applied to
the sublattice {σ`, σ`−1, γ`−1, τ`−1, τ`}, there is a separated solvability
obstruction I[µ`−1, ν`−1]S`−1

contained in the interval I[σ`−1, γ`−1] such
that

I[µ`−1, ν`−1]S`−1
; I[µ`, ν`]S` .

Similarly, for each i = 1, 2, . . . , ` successively we can apply Corol-
lary 7.14 to the sublattice {σ`−i+1, σ`−i, γ`−i, τ`−i, τ`−i+1} to obtain a
separated solvability obstruction I[µ`−i, ν`−i]S`−i contained in the in-
terval I[σ`−i, γ`−i] such that

I[µ`−i, ν`−i]S`−i ; I[µ`−i+1, ν`−i+1]S`−i+1
.

When we reach i = ` we will have a sequence

I[µ0, ν0]S0 ; I[µ1, ν1]S1 ; I[µ2, ν2]S2 ; · · · ; I[µ`, ν`]S`.

According to Theorem 7.9, there is no such sequence if ` ≥ 2n − 4.
This completes the proof of (2) =⇒(3).

To prove that (3)=⇒(1), we observe that:

(i) Each N`+5 is subdirectly irreducible.
(ii) Each N`+5 is projective in the variety of lattices. (See [64].)

By Theorem 2.7, there is an identity ε`+5 that holds in a lattice L if
and only if L has no sublattice isomorphic to N`+5. Since (3) asserts
that N`+5 is not embeddable in Con(A) for any A ∈ V, ε`+5 is a
congruence identity of V. Since ε`+5 fails in N`+5, it is a nontrivial
congruence identity. �

Corollary 7.16. (Cf. [57]) Any congruence n–permutable variety
satisfies a nontrivial congruence identity.

Proof. It suffices to observe that congruence n-permutability can
be characterized by an idempotent Maltsev condition, for example by
the Maltsev condition of J. Hagemann and A. Mitschke from [29], and
that the variety of semilattices is not congruence n-permutable for any
n. �
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Corollary 7.17. Any congruence join semidistributive variety sat-
isfies a nontrivial congruence identity.

Proof. Congruence join semidistributivity can be characterized
by a set of idempotent Maltsev conditions, as is shown in [3], and the
variety of semilattices is not congruence join semidistributive. �

See Theorem 8.14 (7) for explicit congruence identities for congru-
ence join semidistributive varieties.



CHAPTER 8

Congruence Meet and Join Semidistributivity

In this chapter we will characterize the satisfaction of a nontrivial
congruence identity in several new ways (Theorems 8.3, 8.10, 8.11, 8.12,
and 8.13). Our goal is to understand congruence join semidistributiv-
ity and its relationship to the satisfaction of a nontrivial congruence
identity. Although most of the results of this chapter concern vari-
eties satisfying congruence identities, we start the chapter be recalling
known results about congruence meet semidistributivity and we end
the chapter with new results (Theorem 8.14) that provide several char-
acterizations of congruence join semidistributivity for varieties. In the
process we solve an old problem of B. Jónsson (Problem 2.18 of [40])
by showing that the class of congruence join semidistributive varieties
is definable by a Maltsev condition.

It should be noted that any congruence join semidistributive variety
is also congruence meet semidistributive (see Exercise 7.14 (10) of [34]
or (1)=⇒(6) of Theorem 8.14 of this chapter). Therefore congruence
join semidistributivity and congruence semidistributivity are equivalent
properties for varieties.

8.1. Congruence Meet Semidistributivity

Using straightforward arguments, it follows from a combination of
the statements in Theorem 2.19 that if α and β are congruences on
an algebra A, then [α, β] ≤ α ∧ β and (α ∧ β)/[α, β] is an abelian
congruence on A/[α, β]. Therefore, if V is a variety that omits abelian
congruences, it follows that [α, β] = α ∧ β for any α, β ∈ Con(A) for
any A ∈ V. Theorem 2.19 (5) implies that the commutator operation
is semidistributive in its first variable i.e.,

[α, γ] = δ & [β, γ] = δ → [α ∨ β, γ] = δ .

Hence if V omits abelian congruences, then the congruence lattices of
members of V must satisfy the ordinary meet semidistributive law:

α ∧ γ = δ & β ∧ γ = δ → (α ∨ β) ∧ γ = δ .

The converse of this statement is true, but is much more difficult to
prove. It was established for locally finite varieties in Theorem 9.10
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of [34] using tame congruence theory, and in full generality in Corol-
lary 4.7 of [52] using combinatorial arguments. This result links many
different properties, as we will show in the next theorem.

Recall the type of meet continuous lattice words defined before
Corollary 2.25: if x, y, z are variables let y0 = y, z0 = z, yn+1 =
y ∨ (x ∧ zn), and zn+1 = z ∨ (x ∧ yn). Let yω =

∨
n<ω yn and let

zω =
∨
n<ω zn. When it is necessary to indicate the variables involved

and their order we will write yω(x, y, z) for yω and zω(x, y, z) for zω.

Theorem 8.1. Let V be a variety. The following conditions are
equivalent.

(1) V is congruence meet semidistributive.
(2) There is a positive integer n such that if A ∈ V and α, β, γ ∈

Con(A), then

α ∩ (β ◦ γ) ⊆ βn ,

where βn := yn(α, β, γ).
(3) [α, β] = α ∧ β. for all α, β ∈ Con(A) and all A ∈ V.
(4) No member of V has a nontrivial abelian congruence.
(5) No member of V has a nontrivial abelian tolerance.
(6) C(α, β; δ)⇐⇒β ∧ (α ∨ (β ∧ δ)) ≤ δ for all A ∈ V and all

α, β, δ ∈ Con(A).
(7) V satisfies the meet continuous congruence identity

x ∧ (y ∨ z) ≈ x ∧ yω ,
where yω = yω(x, y, z).

(8) The meet continuous congruence variety of V is meet semidis-
tributive.

(9) M3 is not embeddable in Con(A) for any A ∈ V.
(10) V satisfies a family of idempotent Maltsev conditions that,

taken together, fail in any nontrivial variety of modules. (Equiv-
alently, V satisfies a single idempotent Maltsev condition that
fails in any nontrivial variety of modules.)

Proof. The equivalence of items (1), (2) and (3) is Corollary 4.7
of [52].

If (3) holds, and A ∈ V has an abelian congruence γ, then 0 =
[γ, γ] = γ∧γ = γ. Hence γ is trivial, and (4) holds. Conversely, assume
that (4) holds. It follows from Theorem 2.19 (8) that C(α, β;α ∧ β)
holds, so [α, β] ≤ α ∧ β holds for any pair of congruences on any
algebra A. Moreover C(α, β; [α, β]) holds, according to the definition
of the commutator, and

C(α, β; [α, β]) =⇒C(α ∧ β, α ∧ β; [α, β])
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by Theorem 2.19 (1), so (α ∧ β)/[α, β] is an abelian congruence on
A/[α, β] by Theorem 2.19 (10). Therefore, from (4) we derive (3).

Assume that (4) holds. Since V omits nontrivial abelian congru-
ences, it omits nontrivial strongly abelian congruences. Therefore, by
Theorem 3.12, V satisfies a nontrivial idempotent Maltsev condition.
In this situation, Theorem 3.23 guarantees that an abelian tolerance
generates an abelian congruence. Since V omits nontrivial abelian
congruences, V omits nontrivial abelian tolerances. This shows that
(4)=⇒(5). The reverse implication is trivial.

To connect item (6) with the preceding conditions, assume that (3)
holds and that

(a) C(α, β; δ) holds.

By Theorem 2.19 (8),

(b) C(α, β; β) holds,

so by Theorem 2.19 (6) we derive from (a) and (b) that

(c) C(α, β; β ∧ δ) holds.

Again by Theorem 2.19 (8) we get that

(d) C(β ∧ δ, β; β ∧ δ) holds,

so by Theorem 2.19 (5) we get from (c) and (d) that

(e) C(α ∨ (β ∧ δ), β; β ∧ δ) holds.

From this and the definition of the commutator we get that

(f) [(α ∨ (β ∧ δ)), β] ≤ β ∧ δ holds.

Now from (f) and item (3) we derive that

β ∧ (α ∨ (β ∧ δ)) = [(α ∨ (β ∧ δ)), β] ≤ β ∧ δ ≤ δ .

Conversely, β ∧ (α ∨ (β ∧ δ)) ≤ δ implies C(α, β; δ) for any three
congruences on any algebra, as Theorem 2.19 (8) proves. This shows
that (3) implies (6).

On the other hand, to see that (6)=⇒(4), take α = β = γ and δ = 0
in (6). The result is the assertion that γ is abelian if and only if γ = 0.

The equivalence of (1), (7) and (8) follows from Theorem 2.23 and
the fact that congruence lattices are meet continuous.

Item (8) implies item (9), since M3 is not meet semidistributive.
Assume that (9) holds. Then, since M3 satisfies Whitman’s con-

dition (W), it follows from Theorem 4.18 that V satisfies a nontrivial
idempotent Maltsev condition. In this situation, a result from [52]
explains how to construct from a nontrivial abelian congruence on an
algebra in V a copy of M3 in the congruence lattice of some other al-
gebra in V. Namely, suppose that α is a nonzero abelian congruence
on some A ∈ V, that A ×α A is the subalgebra of A2 whose universe
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is α, that η1, η2 ∈ Con(A ×α A) are the coordinate projection ker-
nels, and that ∆ is the congruence on A×α A generated by the pairs
〈(a, a), (b, b)〉 with (a, b) ∈ α. It is a consequence of Theorem 3.5 of [52]
that η1, η2, and ∆ generate a sublattice of Con(A ×α A) isomorphic
to M3. Thus, if (9) holds, then (4) must hold.

The Pixley–Wille algorithm shows that the class of varieties satis-
fying a congruence condition like the one in item (2) can be defined by
a single idempotent Maltsev condition. Since (2) is equivalent to (4),
this Maltsev condition cannot be satisfied by any variety with nontriv-
ial abelian algebras, hence by any nontrivial variety of modules. Thus
(7) implies the stronger of the two statements in (10).

Finally, we show that the weaker of the two statements in (10)
implies (4). Assume instead that V satisfies a family F of idempotent
Maltsev conditions that fail in every nontrivial variety of modules, but
that some A ∈ V has a nontrivial abelian congruence α. We may
assume, without loss of generality, that V is an idempotent variety.
For if we replace V and A by their idempotent reducts, then we do not
affect the idempotent Maltsev conditions satisfied by V, nor that α is
an abelian congruence on A. Thus, we make this assumption. We may
(and do) further assume that A itself is abelian, since if it is not we
may simply replace it by one of its subalgebras that is supported by
nontrivial α-block.

At least one of the Maltsev conditions in F is nontrivial, since these
conditions taken together fail in every nontrivial variety of modules.
Corollary 4.5 of [52] proves that an abelian algebra A in a variety sat-
isfying some nontrivial idempotent Maltsev condition is quasi-affine,
which by definition means that A is a subalgebra of a reduct of an
algebra that has the same universe and polynomial operations as some
module. Since A is both idempotent and quasi-affine, it is a subalgebra
of an algebra M∗ that is a reduct of some module M over some ring
R. There is no harm in renaming the zero element of M so that it
lies in A. If p is the module term x − y + z, then p : M3 → M is a
homomorphism, and therefore p : A3 → M∗ is also a homomorphism.
The image A′ := p(A3) contains A, since p(a, a, a) = a. Moreover, A′

is a quotient of A3 ∈ V, hence A′ ∈ V. This produces a possibly larger
subalgebra A ≤ A′ ≤ M∗. Iterating this, A ≤ A′ ≤ A′′ ≤ · · · , and
taking a union yields an algebra B ∈ V that is a subalgebra of M∗

and is closed under p. Since 0 ∈ A ⊆ B, the set B is closed under the
abelian group operations x+y = p(x, 0, y),−x = p(0, x, 0), and 0. Thus

B̂ := 〈B; p, 0〉 is an additive subgroup of M that is also a subalgebra of

a reduct of M. This implies that B̂ is term equivalent to a module over
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the subring of R consisting of all elements r ∈ R such that rB ⊆ B.

Clearly B̂ is nontrivial, since B contains A as a subalgebra. Moreover,

B̂ satisfies the conditions in F , since its reduct B does. Therefore the

variety generated by B̂ is (up to term equivalence) a nontrivial variety
of modules that satisfies the conditions in F , contrary to (10). This
contradicts our assumption that (4) fails to hold, so we are done. �

8.2. More on Congruence Identities

Theorem 8.2. Assume that A ∈ V, and that Con(A) has a sub-
lattice of congruences labeled as in Figure 8.1. If JT is a separated
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Figure 8.1.

solvability obstruction in I[β, α], then there is a separated solvability
obstruction IS contained in I[α, τ ] and a ;–sequence from IS to JT .

Proof. We will show first that if JT is a separated solvability ob-
struction in I[β, α], then there is a separated solvability obstruction I ′S′
contained in either I[β, α] or I[α, τ ] and a ;–sequence of length 1 or
2 from I ′S′ to JT . If it happens that I ′S′ is contained in I[α, τ ], then
we are done. If instead I ′S′ is contained in I[β, α], then we can repeat
the argument to find I ′′S′′ contained in either I[β, α] or I[α, τ ] and a ;–
sequence from I ′′S′′ to I ′S′. The argument cannot be repeated indefinitely
since concatenating ;–sequences forms longer ;–sequences and there
is a bound on the length of ;–sequences. Therefore the argument will
produce a separated solvability obstruction in I[α, τ ] that initiates a
;–sequence terminating at JT .

Recall from the proof of Theorem 7.13, applied to the setting of
Corollary 7.14, that if µ := γ ∩ (δ : T ), then I[µ, γ]γ ; I[δ, θ]T . Since
µ ≤ (δ : T ) and δ ≤ (δ : T ), we have

γ ∩ (δ ∨ µ) ≤ γ ∩ (δ : T ) = µ ,

and therefore γ ∧ (δ ∨ (γ ∧ µ)) ≤ µ. By Theorem 2.19 (8) we get that
C(δ, γ;µ) holds, or equivalently δ ≤ (µ : γ). If α 6≤ (µ : γ), then for
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λ := α ∧ (µ : γ) ( ≥ δ ≥ β) we have that I[λ, α] is a nontrivial subin-
terval of I[β, α]. According to the second paragraph of Lemma 7.12,
the interval I[λ, α] is a solvability obstruction. That paragraph further
guarantees that, since α ∩ CgA(γ) ≤ λ, we have I[λ, α]α ; I[µ, γ]γ.
Therefore, in the case where α 6≤ (µ : γ) we have located a separated
solvability obstruction I[λ, α]α in I[β, α] and a ;-sequence

I[λ, α]α ; I[µ, γ]γ ; I[δ, θ]T = JT

of length two.
Now consider the case where α ≤ (µ : γ). Since γ 6≤ (µ : γ) and

γ ≤ τ we have τ 6≤ (µ : γ), so κ := τ ∩ (µ : γ) satisfies α ≤ κ < τ
in this case. According to the second paragraph of Lemma 7.12, the
interval I[κ, τ ] is a solvability obstruction. Since γ 6≤ κ, I[κ, τ ]γ is a
separated solvability obstruction. We prove that I[κ, τ ]γ ; I[δ, τ ]T by
verifying criteria (d)’ and (g) from Lemma 7.12. In our setting these
statements are

(d)’ γ ∩ CgA(T ) ⊆ (γ ∧ (δ : T )) ∨ (CgA(T ) ∧ (δ : T )) and
(g) γ ∩ κ = γ ∩ (δ : T ).

Item (d)’ follows from the observation that

γ ∩ CgA(T ) ⊆ γ ∩ α ⊆ µ := γ ∩ (δ : T ) ,

since γ ∩ (δ : T ) is the first joinand in the right hand side of (d)’. For
item (g), observe that

γ ∩ κ = γ ∩ τ ∩ (µ : γ) = γ ∩ (µ : γ) = µ = γ ∩ (δ : T ) .

This proves that I[κ, τ ]γ ; I[δ, τ ]T . �

Let L be a lattice. A herringbone in L is the union of three de-
scending chains {αi} ∪ {β2i} ∪ {γ2i+1} in L where {αi} ∪ {β2i} and
{αi} ∪ {γ2i+1} are sublattices of L ordered as in Figure 8.2. In other
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Figure 8.2. A herringbone
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words, a herringbone is a partial sublattice of L, ordered as in Fig-
ure 8.2, with

(β) α2i+1 ∧ β2i = β2i+2, α2i+2 ∨ β2i = α2i, and
(γ) α2i+2 ∧ γ2i+1 = γ2i+3, α2i+3 ∨ γ2i+1 = α2i+1.

The length of the herringbone is∞ if there are infinitely many distinct
α’s. Otherwise, the length of the herringbone is the supremum of the
superscripts k such that α0 > α1 > · · · > αk. (It is easy to see from (β)
and (γ) that if some αk = αk+1 then αk = αk+1 = αk+2 = · · · .) Our
first goal is to prove that if a variety V satisfies a nontrivial congruence
identity, then there is a fixed bound on the length of any herringbone
that appears in the congruence lattice of a member of V.

Let x, y and z be lattice variables. Define lattice words by y0 = y,
z0 = z, yn+1 = y∧(x∨zn), and zn+1 = z∧(x∨yn). The construction of
these words is dual to the words yn and zn, which preceded the state-
ment of Theorem 8.1. As there, we will write yn(x, y, z) and zn(x, y, z)
when it is necessary to indicate the order of the variables.

Theorem 8.3. Let V be a variety. The following conditions are
equivalent.

(1) V satisfies a nontrivial congruence identity.
(2) There is a positive integer N such that no algebra in V has a

herringbone of length greater than N in its congruence lattice.
(3) V satisfies the congruence identity

zM ≈ zM+1

for some M .

Proof. If V satisfies a nontrivial congruence identity, then by The-
orems 7.15 and 5.25 the variety V has a Hobby–McKenzie term of arity
n for some n < ω. We argue that no algebra in V has a herringbone of
length greater than 2n − 3 in its congruence lattice. If this is not the
case, then some A ∈ V has a herringbone {αi} ∪ {β2i} ∪ {γ2i+1} with
α0 > α1 > · · · > α2n−3 > α2n−2. Figure 8.3 isolates five congruences
near the bottom of the herringbone that form a sublattice of Con(A)
isomorphic to N5. For the congruences in this figure, if α2n−3 �� α2n−4,
then by Lemma 6.10 (2) we derive that

β2n−4 = β2n−4 ∧ α2n−4 �� β2n−4 ∧ α2n−3 = β2n−2.

But this was proved to be impossible in Theorem 6.25 (1). Therefore
we cannot have α2n−3 �� α2n−4. By Theorem 6.14 there is a solvabil-
ity obstruction I[µ2n−4, ν2n−4] contained in the interval I[α2n−3, α2n−4].
This obstruction is separated by S2n−4 := ν2n−4. We are now in a po-
sition to apply Theorem 8.2 to a copy of N5 that is slightly higher up
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Figure 8.3. A piece near the bottom of the herringbone

in this herringbone (Figure 8.4). The separated solvability obstruction
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Figure 8.4. A piece higher up

I[µ2n−4, ν2n−4]S2n−4 that is contained in I[α2n−3, α2n−4] plays the role of
JT of that theorem. The theorem guarantees the existence of a sepa-
rated solvability obstruction I[µ2n−5, ν2n−5]S2n−5 in I[α2n−5, α2n−5] and
a ;–sequence

I[µ2n−5, ν2n−5]S2n−5 ; · · ·; I[µ2n−4, ν2n−4]S2n−4 .

We can work our way up the herringbone, alternately using copies of
N5 on the right and left and using Theorem 8.2 at each step, to derive
that for each i = 4, 5, . . . , 2n − 1, if I[α2n−i+1, α2n−i] contains a sepa-
rated solvability obstruction I[µ2n−i, ν2n−i]S2n−i , then I[α2n−i, α2n−i−1]
contains a separated solvability obstruction I[µ2n−i−1, ν2n−i−1]S2n−i−1

for which there exists a ;–sequence

I[µ2n−i−1, ν2n−i−1]S2n−i−1
; · · ·; I[µ2n−i, ν2n−i]S2n−i .

When we reach the top of the herringbone we will have located a ;–
sequence

I[µ0, ν0]S0 ; · · ·; I[µ1, ν1]S1 ; · · · · · ·; I[µ2n−4, ν2n−4]S2n−4
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of length at least 2n− 4. But we proved in Theorem 7.9 that there is
no ;–sequence of this length. This contradiction proves that there is
no herringbone of length greater than 2n− 3 in Con(A).

Now we prove that (2) =⇒ (3). Start with three congruences
α, β and γ, and define βn := yn(α, β, γ) and γn := zn(α, β, γ) where
yn(x, y, z) and zn(x, y, z) are the terms defined before the statement of
this theorem. Let αn := α ∨ βn if n is even, and αn := α ∨ γn if n is
odd. Since β0 = β ≥ β ∧ (α ∨ γ0) = β1, and γ0 ≥ γ1, it is easy to see
inductively that

βn+1 = β ∧ (α ∨ γn) ≥ β ∧ (α ∨ γn+1) = βn+2,

and γn+1 ≥ γn+2. Thus the β and γ-sequences are descending chains,
which forces the α-sequence to be a descending chain. We claim that

{αn | all n} ∪ {βn | even n} ∪ {γn | odd n}
is a herringbone. To see this, we must verify conditions (β) and (γ)
from the definition of a herringbone:

(β) α2i+1 ∧ β2i = β2i+2, α2i+2 ∨ β2i = α2i

(γ) α2i+2 ∧ γ2i+1 = γ2i+3, α2i+3 ∨ γ2i+1 = α2i+1.

To show that α2i+1 ∧ β2i = β2i+2, observe that

β2i+2 = β ∧ (α ∨ γ2i+1) = β ∧ α2i+1 ≤ α2i+1,

and (as observed earlier) β2i+2 ≤ β2i. Thus β2i+2 ≤ α2i+1 ∧ β2i. Con-
versely,

α2i+1 ∧ β2i = (α ∨ γ2i+1) ∧ β2i ≤ (α ∨ γ2i+1) ∧ β = β2i+2.

To show that α2i+2 ∨ β2i = α2i, observe that

α2i+2 ∨ β2i ≥ α ∨ β2i = α2i,

while α2i+2 ≤ α2i and β2i ≤ α ∨ β2i = α2i, so α2i+2 ∨ β2i ≤ α2i. This
establishes (β), and (γ) can be established the same way.

It follows that if N bounds the length of any herringbone in any
congruence lattice of a member of V, then however we choose our orig-
inal three congruences α, β and γ, the sequences defined above must
satisfy αN = αN+1 = αN+2 = · · · , and therefore γM = γM+2 holds for
each M ≥ N . Since the γ’s form a descending chain, we conclude that
γM = γM+1 holds for each M ≥ N . Therefore zM ≈ zM+1 holds in all
congruence lattices of members of V.

Item (1) follows from (3) and the fact that the identity zM ≈ zM+1 is
nontrivial. To see that it fails in some lattice, take any lattice contain-
ing a herringbone of length at least M + 1. By setting α := αM+1, β :=
β0 and γ := γ1, it is easy to see that zM (α, β, γ) 6= zM+1(α, β, γ). �
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This argument shows that if V has a Hobby–McKenzie term of
arity n, then V satisfies the congruence identity z2n−3 ≈ z2n−2. These
exponents are not optimal, since if n = 3 then our proof shows that
V satisfies the congruence identity z3 ≈ z4. But it can be argued (by
considering all Hobby–Mckenzie terms of arity 3) that when n = 3 the
variety V is congruence modular, and consequently satisfies z1 ≈ z2 as
a congruence identity.

Recall from Section 2.2 that the SD∨-configuration is the pair

(P(SD∨), p ≈ j)

where P(SD∨) is the partial lattice presented by 〈G | R〉 where G =
{p, q, r, j,m} and R consists of the relations p ∨ q = j = p ∨ r and
q ∧ r = m ≤ p.

Lemma 8.4. P(SD∨) is projective relative to any variety of lattices
satisfying an identity of the form zM ≈ zM+1.

In fact, if σ : L → K is a surjective homomorphism in this variety
and ϕ : P(SD∨) → K is a partial lattice homomorphism, then for any
function f : {p, q, r, s} → L satisfying σ ◦ f = ϕ on the domain of f
there is a homomorphism of partial lattices ϕ : P(SD∨) → L such that
σ ◦ ϕ = ϕ and ϕ(p) ≥ f(p), ϕ(q) ≤ f(q), and ϕ(r) ≤ f(r).

Proof. Define P := P(SD∨), and suppose that ϕ : P → K is
a homomorphism of partial lattices and that f : {p, q, r, s} → L is a
function satisfying σ◦f = ϕ on the domain of f . Let a = f(p), b = f(q)
and c = f(r). Recursively define b0 := b, c0 := c, bn+1 := b ∧ (a ∨ cn),
and cn+1 := c ∧ (a ∨ bn), so that bn = yn(a, b, c) and cn := zn(a, b, c)
where yn(x, y, z) and zn(x, y, z) are the terms defined for the proof of
Theorem 8.3. As we showed in the proof of Theorem 8.3 (1)=⇒(2),
b = b0 ≥ b1 ≥ · · · and c = c0 ≥ c1 ≥ · · · . From the identity zM ≈ zM+1

we get that these chains terminate, in which case bM = bM+1 = b ∧
(a ∨ cM) ≤ a ∨ cM and similarly cM ≤ a ∨ bM . Thus bM ≤ b, cM ≤ c
and a ∨ bM = a ∨ cM . Define ϕ : P → L by ϕ(p) = a ∨ (bM ∧ cM)
(≥ f(p)), ϕ(q) = bM (≤ f(q)), ϕ(r) = cM (≤ f(r)), ϕ(j) = a∨ bM , and
ϕ(m) = bM ∧ cM . It is clear that

ϕ(j) = a ∨ bM = ϕ(p) ∨ ϕ(q) = ϕ(p) ∨ ϕ(r)

and that
ϕ(m) = bM ∧ cM = ϕ(q) ∧ ϕ(r) ≤ ϕ(p).

Therefore ϕ : P → L is a homomorphism of partial lattices. To finish
the proof we must show that σ ◦ ϕ = ϕ. It suffices to prove that
σ ◦ϕ(x) = σ ◦f(x) (= ϕ(x)) when x ∈ {p, q, r} is one of the generators
of P.
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By simultaneous induction, σ(bn) = σ(b) and σ(cn) = σ(c) for all
n, where one of the induction steps is proved by

σ(bn+1) = σ(b) ∧ (σ(a) ∨ σ(cn))
= σ(b) ∧ (σ(a) ∨ σ(c))
= σ(b) ∧ (σ(a) ∨ σ(b)) = σ(b).

Thus σ ◦ f(q) = σ(b) = σ(bM) = σ ◦ ϕ(q), and similarly σ ◦ f(r) =
σ(c) = σ(cM) = σ ◦ ϕ(r). Since q ∧ r ≤ p and ϕ is a homomorphism
we have ϕ(q) ∧ ϕ(r) ≤ ϕ(p). This yields the second equality in

σ ◦ f(p) = σ(a)
= σ(a) ∨ (σ(b) ∧ σ(c))
= σ(a) ∨ (σ(bM) ∧ σ(cM))
= σ ◦ ϕ(p).

The lemma is proved. �
Our first use of Lemma 8.4 will require the following consequence

of Theorem 8.3, which seems to be new even for locally finite varieties.

Theorem 8.5. Assume that V satisfies a nontrivial congruence
identity. If I is an SD∨-failure in Con(A) for some A ∈ V, then
I is abelian.

Proof. We proved in Corollary 6.34 that if V has a weak difference
term, then ∞-solvable SD∨-failures are abelian. Since the assumption
that V satisfies a nontrivial congruence identity implies that V has a
Hobby–McKenzie term, and therefore a weak difference term (Corol-
lary 6.3), to prove the present theorem it will suffice to show that all
SD∨-failures are ∞-solvable. To set up notation for this, assume that
A ∈ V has congruences α, β and γ satisfying α∨β = α∨γ and β∧γ ≤ α.
Our goal is to prove that α �� α ∨ β. Factoring by β ∧ γ if necessary,
we also assume that β ∧ γ = 0.

Our strategy will be to show that if it is not true that α �� α ∨ β,
then Con(A) contains an infinite ;–sequence. This will suffice to
prove the theorem, since Theorem 7.9 provides a finite bound on the
length of ;–sequences. Therefore, assume that α is not ∞–solvably
related to α ∨ β = α ∨ γ. Define new congruences as follows:

• β0 := β ∧ rad(α), and γ0 := γ ∧ rad(α).
• βk+1 := β ∧ (γk : γ) and γk+1 := γ ∧ (βk : β).

Our first goal will be to prove that βk J β and γk J γ for all k.

Claim 8.6. β0 J β and γ0 J γ.

We have assumed that α is not ∞–solvably related to α ∨ β, so
α ∨ β 6≤ rad(α). Since α ≤ rad(α), we conclude that β 6≤ rad(α).



8.2. MORE ON CONGRUENCE IDENTITIES 173

Since rad(α) is a radical congruence, Lemma 7.11 (3) guarantees that
β0 := β ∧ rad(α) J β and similarly γ0 J γ.

Claim 8.7. α ≤ (βk : β) and α ≤ (γk : γ) for all k.

From β0 := β ∧ rad(α) we derive C(rad(α), β; β0) using Theo-
rem 2.19 (8). Hence α ≤ rad(α) ≤ (β0 : β). An identical argument
proves that α ≤ (γ0 : γ).

Now assume that α ≤ (βk : β) for some k. Since γk+1 = γ∧(βk : β)
we compute that

γk+1 ≤ γ ∧ (α ∨ γk+1) ≤ γ ∧ ((βk : β) ∨ γk+1) = γ ∧ (βk : β) = γk+1,

so γk+1 = γ ∧ (α ∨ γk+1). By Theorem 2.19 (8) we conclude that
C(α, γ; γk+1) holds, or α ≤ (γk+1 : γ). This proof that α ≤ (βk : β)
implies α ≤ (γk+1 : γ) works for every k, and for β and γ interchanged,
so the claim follows by induction.

Claim 8.8. If βk J β, then γk+1 J γ. Similarly, if γk J γ, then
βk+1 J β.

If βk J β, then I[βk, β]β is a separated solvability obstruction,
so according to Lemma 7.11 (2) the pseudocomplement (βk : β) is a
radical congruence. We proved in Claim 8.7 that α ≤ (βk : β). If it is
also the case that γ ≤ (βk : β), then

β ≤ α ∨ β = α ∨ γ ≤ (βk : β),

forcing C(β, β; βk), or equivalently βk � β. This is contrary to βk J β,
so it must be that γ 6≤ (βk : β). Now Lemma 7.11 (3) guarantees that

γk+1 := γ ∧ (βk : β) J γ.

The proof that γk J γ implies βk+1 J β is the same.

Claim 8.9. I[γk+1, γ]γ ; I[βk, β]β and I[βk+1, β]β ; I[γk, γ]γ for
all k.

The second paragraph of Lemma 7.12 describes a method to pro-
duce ;-related intervals, which we employ now. Since I[βk, β]β is a
separated solvability obstruction and γ 6≤ (βk : β), then for γk+1 :=
γ ∧ (βk : β) we have that I[γk+1, γ]γ is also a separated solvability
obstruction. Moreover, as is shown in Lemma 7.12, to establish that
I[γk+1, γ]γ ; I[βk, β]β it is sufficient to verify that γ∩CgA(β) ⊆ γk+1.
But γ ∩ CgA(β) = γ ∩ β = 0, so this certainly holds.
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Under the assumption that α is not∞–solvably related to α∨β we
have produced an infinite ;–sequence

· · · · · ·; I[β4, β]β ; I[γ3, γ]γ ; I[β2, β]β ; I[γ1, γ]γ ; I[β0, β]β.

This completes the proof of the theorem, as we explained in the second
paragraph of this proof. �

Let V be a variety satisfying a nontrivial congruence identity. The-
orem 8.5 shows that if A ∈ V, then the SD∨-failures in Con(A) are
abelian. Since V has a weak difference term, these abelian intervals
consist of permuting equivalence relations, hence these intervals are
modular. It turns out that this property characterizes the class of
varieties satisfying nontrivial congruence identities.

Theorem 8.10. The following are equivalent for a variety V.

(1) V satisfies a nontrivial congruence identity.
(2) For every A ∈ V, Con(A) has an SD∨/Modular factorization

in the category of meet continuous lattices.
(3) For every A ∈ V, Con(A) has an SD∨/Modular factorization

in the category of ordinary lattices.
(4) For every A ∈ V, each SD∨-failure in Con(A) is modular.
(5) If L belongs to CON(V), then each SD∨-failure in L is modu-

lar.

Proof. If (1) holds, then from Theorem 7.15 (1)=⇒(2), Theo-
rem 5.25 (2)=⇒(3), and Corollary 6.3 it can be deduced that V has a
weak difference term. Therefore the natural homomorphism

ν : Con(A)→ Con(A)/
s∼

provides a factorization of Con(A) of the form SD∧/Modular in the
category of meet continuous lattices. We need to argue that the quo-
tient Con(A)/

s∼ is not only meet semidistributive, but is also join
semidistributive.

SD∨-failures in Con(A)/
s∼ are each of the form I = I[ϕ(p), ϕ(j)]

for some homomorphism of partial lattices ϕ : P → Con(A)/
s∼ from

the partial lattice P := P(SD∨) of the SD∨-configuration. By the
projectivity of P, proved in Lemma 8.4, to each such homomorphism
there is a homomorphism ϕ : P→ Con(A) such that ν ◦ ϕ = ϕ where

ν : Con(A) → Con(A)/
s∼ is the natural map. The homomorphism

ϕ identifies an SD∨-failure I[ϕ(p), ϕ(j)] in Con(A), which by Theo-

rem 8.5 must be abelian. But then ϕ(p)
s∼ϕ(j), so since

s∼ is contained
in ker(ν) we derive that

ϕ(p) = ν ◦ ϕ(p) = ν ◦ ϕ(j) = ϕ(j).
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This shows that our original SD∨-failure I[ϕ(p), ϕ(j)] in Con(A)/
s∼

is trivial. Since it was chosen arbitrarily, Con(A)/
s∼ is join semidis-

tributive.
As noted when proving the dual result (Theorem 6.17) the impli-

cations (2)=⇒(3)=⇒(4) are straightforward.
We prove the contrapositive of (4)=⇒(5). If there is an K ∈

CON(V) that has a nonmodular SD∨-failure, then since V consists of
the homomorphic images of lattices in the congruence prevariety of V
there is an algebra A ∈ V, a sublattice L ≤ Con(A), and surjective
homomorphism σ : L → K. The nonmodular SD∨-failure I in K can
be lifted to an SD∨-failure I in L using the projectivity of the SD∨-
configuration. The fact that I is nonmodular means that it contains a
sublattice isomorphic to the pentagon, N5. The pentagon is a projec-
tive lattice, so it can be lifted to a pentagon in I, establishing that I is a
nonmodular SD∨-failure in L, hence the interval in Con(A) generated
by I is also a nonmodular SD∨-failure. This proves that (4)=⇒(5).

The implication (5)=⇒(4) is trivial, so we complete the proof by
showing that (4)=⇒(1). Assume that (4) holds. This fact can be
expressed by a quasi-identity valid in congruence lattices of V. We
have already discussed how to write down a quasi-identity for the dual
property that SD∧-failures are modular in Remark 2.24, so it is easy to
write down the one we need now. Namely, set t := p ∨ (q ∧ r), and for
each i set x∗i := (xi ∧ s) ∨ t. A quasi-identity expressing the fact that
SD∨-failures are modular is

(8.1) ((p ∨ q) ≈ s) & ((p ∨ r) ≈ s)→ u(x∗1, x
∗
2, x
∗
3) ≈ v(x∗1, x

∗
2, x
∗
3)

where u ≈ v is the modular law. As explained in the paragraph after
Definition 2.4, the fact that the premises of (8.1) are meet-free implies
that (8.1) satisfies (W). By Theorem 2.22 this means that the class of
varieties for which item (4) is true is definable by a set of idempotent
Maltsev conditions. At least one of these must fail in the variety of
semilattices, since, as we now prove, the variety of semilattices does not
satisfy item (4). Let 2 = 〈{0, 1}; +〉 be the 2-element join semilattice,
and let B = 22. We claim that Con(B2) has a nonmodular SD∨-failure.
To see this, let θ be the kernel of the homomorphism +: B2 → B. That
is, θ = {〈(a, b), (c, d)〉 | a+ b = c+ d}. Let η1 = {〈(a, b), (c, d)〉 | a = c}
and η2 = {〈(a, b), (c, d)〉 | b = d} be the coordinate projection kernels.
For any two pairs (p, q), (r, s) ∈ B2 it is the case that

(p, q) η1 (p, p+ q + r + s) θ (p+ q + r + s, p+ q + r + s),

and similarly (p+ q+ r+ s, p+ q+ r+ s) θ ◦ η1 (r, s), so (p, q) is related
to (r, s) by θ ∨ η1. The pairs were arbitrary, so θ ∨ η1 = 1; similarly
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θ∨η2 = 1. This proves that I[θ∨(η1∧η2), 1] = I[θ, 1] is an SD∨-failure.
But B2/θ is isomorphic to B, since + is a surjective homomorphism,
so I[θ, 1] ∼= Con(B) = Con(22) ∼= D2, which is a nonmodular lattice.
This proves that any set of idempotent Maltsev conditions defining
the class of varieties satisfying item (4) includes one that fails in the
variety of semilattices, hence from Theorem 7.15 any variety satisfying
(4) must satisfy (1). �

The next result is an analogue of the D1-version of Theorem 4.23.

Theorem 8.11. Let V be a variety. The following conditions are
equivalent.

(1) V satisfies an idempotent Maltsev condition that fails in the
variety of semilattices.

(2) V satisfies a nontrivial congruence identity.
(3) D2 does not appear as a sublattice of Con(A) for any A ∈ V.
(4) D2 6∈ CON(V).

Proof. We proved the equivalence of (1) and (2) in Theorem 7.15.
If item (3) holds, then V omits special D2’s. According to Theo-

rems 5.28, this implies that V satisfies an idempotent Maltsev condition
that fails in the variety of semilattices, so (3)=⇒(1).

Now suppose that item (2) holds and that item (3) fails to hold.
The failure of (3) implies that some A ∈ V had a copy of D2 in its
congruence lattice. Choose a copy and label it as in Figure 8.5. Then
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Figure 8.5.

α ∨ β = α ∨ γ, and α ∨ (β ∧ γ) = α. Therefore, since item (2) holds,
Theorem 8.5 guarantees that α � α ∨ β. But this is forbidden by
Theorem 4.16 (2). Thus (1), (2) and (3) are equivalent.

Both implications (4)=⇒(2) and (4)=⇒(3) are trivial, so to com-
plete the proof we will show that items (2) and (3) jointly imply (4).
Assume that items (2) and (3) are true for V. From (2) and Theo-
rem 8.3 we obtain that there is some positive integer M such that the
identity zM ≈ zM+1 holds in CON(V). Let ZM denote the variety
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of lattices axiomatized by zM ≈ zM+1. It is proved in Theorem 2.4
(5)=⇒(6) of [48] that D2 is projective in any ZM that contains D2.
Since D2 is projective and subdirectly irreducible in ZM , the subclass
U ⊆ ZM of lattices that have no sublattice isomorphic to D2 is a
variety. By item (3), U contains the congruence lattices of members
of V, hence U contains the variety generated by these lattices. Since
CON(V) ⊆ U and D2 /∈ U , (4) holds. �

The statement of the next theorem, which characterizes the class of
varieties satisfying congruence identities in yet another way, should be
compared to the statement of Theorem 4.12, which characterizes the
class of varieties satisfying meet continuous congruence identities.

Theorem 8.12. The following conditions on a variety V are equiv-
alent.

(1) V satisfies an idempotent Maltsev condition that fails in the
variety of semilattices.

(2) The quasi-identity

(8.2) ((p ∨ q) ≈ s) & ((p ∨ r) ≈ s) & (p[2] ≈ s)→ ((p ∨ (q ∧ r)) ≈ s) .

holds in the congruence lattices of algebras in V.
(3) Quasi-identity (8.2) holds in CON(V).
(4) V satisfies a nontrivial congruence identity.

Quasi-identity (8.2) in item (2) is the dual of quasi-identity (4.4) of
Theorem 4.12 (2).

Proof. We proved the equivalence of (1) and (4) in Theorem 7.15.
The implication (3)=⇒(2) is obvious. We have previously noted that
D1 fails quasi-identity (4.4) of Theorem 4.12 (2), so of course D2 fails
the dual quasi-identity of the present theorem. So, if the congru-
ence lattices of algebras in V satisfy quasi-identity (8.2), then D2 is
not embeddable in the congruence lattice of any algebra in V. From
Theorem 8.11 it follows that V satisfies a nontrivial congruence iden-
tity. This shows that (2)=⇒(4). In summary, these observations show
that (3)=⇒(2)=⇒(4)⇐⇒(1). The rest of the proof will be devoted to
showing that (4)=⇒(3). We argue by contradiction, so assume that V
satisfies a nontrivial congruence identity, but CON(V) fails to satisfy
quasi-identity (8.2).

Quasi-identity (8.2) is equivalent modulo the axioms of lattice the-
ory to the following quasi-identity:

(8.3) ((p∨ q) ≈ s)&((p∨ r) ≈ s)&(p[2] ≈ s)&((q∧ r) ≤ p)→ (p ≈ s) .
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This is because any assignment of variables in some lattice that fails
(8.3) also fails (8.2), while, if p 7→ a, q 7→ b, r 7→ c, s 7→ d is an assign-
ment that fails (8.2), then the reassignment p 7→ a′ := a ∨ (b ∧ c), q 7→
b, r 7→ c, s 7→ d clearly satisfies the first, second and fourth premise of
(8.3) and fails the conclusion. To see that this reassignment also sat-
isfies the third premise of (8.3) we must verify that (a′)[2](a′, b, c) = d.
The fact that the first two premises are satisfied implies that d is the
largest element of the sublattice generated by {a, b, c}. This shows that
(a′)[2](a′, b, c) ≤ d. But since the lattice operations are monotone, and
a ≤ a′, we get d = a[2](a, b, c) ≤ (a′)[2](a′, b, c). Thus (a′)[2](a′, b, c) = d,
and the third premise is satisfied.

Let Q denote quasi-identity (8.3), and let (P(Q), p ≈ s) be the Q-
configuration. Since we have assumed that some K ∈ CON(V) fails
Q, there is a lattice K ∈ CON(V) and a homomorphism of partial
lattices ϕ : P(Q) → K such that ϕ(p) < ϕ(s). For concreteness, let
a := ϕ(p), b := ϕ(q), c := ϕ(r) and d := ϕ(s). Since K ∈ CON(V)
there is an algebra A ∈ V, a sublattice L ≤ Con(A) and a surjective
homomorphism σ : L→ K. Choose a function f : {p, q, r, s} → L such
that σ◦f = ϕ on the domain of f . Since ϕ is a homomorphism of partial
lattices and q ∧ r ≤ p, q, r, s in P(Q), the element ϕ(q)∧ϕ(r) = b∧ c is
the smallest element of the sublattice generated by {a, b, c, d}. Thus, we
may assume that f is chosen so that f(q)∧f(r) ≤ f(p), f(q), f(r), f(s).

The function f is an assignment of the variables of Q in L. We
wish to modify this assignment to a better one. Since P(Q) may be
obtained (up to isomorphism) from P(SD∨) by adding more relations,
there is a (surjective) homomorphism ψ : P(SD∨) → P(Q) that is the
identity on the generators. Applying Lemma 8.4 to the assignment
f ◦ ψ : {p, q, r, s} → L we obtain a homomorphism of partial lattices
ψ : P(SD∨) → L such that σ ◦ ψ = ϕ ◦ ψ (Figure 8.6). The second
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clause of Lemma 8.4 guarantees that

(8.4)

ψ(q) ∧ ψ(r) ≤ (f ◦ ψ(q)) ∧ (f ◦ ψ(r))
= f(q) ∧ f(r) ≤ f(p)
= f ◦ ψ(p)
≤ ψ(p),

so if ψ is taken to define an assignment of the variables of Q in L,
p 7→ α, q 7→ β, r 7→ γ, s 7→ δ, then

(i) α ∨ β = δ and α ∨ γ = δ, (by the projectivity of P(SD∨))
(ii) β ∧ γ ≤ α (by (8.4)), and

(iii) σ(α) = a < d = σ(δ) (by the projectivity of P(SD∨)).

This assignment is not necessarily a failure of Q in L, since the third
premise α[2] = δ of Q may not be satisfied. But since the third premise
was satisfied by ϕ : P(Q)→ K we at least have

(iv) σ(α[2]) = a[2] = d = σ(δ).

The rest of the argument produces a contradiction from proper-
ties (i)—(iv). From items (i) and (ii) we derive that I[α, α ∨ β] is an
SD∨-failure, hence is an abelian interval according to Theorem 8.5.
By this and item (i) we get α ∨ β s∼α s∼α ∨ γ, which is hypothe-
sis (1) of Lemma 6.27. Item (ii) above is the same as hypothesis (2) of
Lemma 6.27, and our current assumption that V satisfies a congruence
identity is strong enough to guarantee that V has a weak difference
term. Since all the hypotheses of Lemma 6.27 currently hold, its con-
clusion also holds, which is the equality

(β ∨ (α ∧ γ)) ∧ (γ ∨ (α ∧ β)) = (α ∧ β) ∨ (α ∧ γ).

Using this to move from the first line to the second in

α[2](α, β, γ) := α ∨ ((β ∨ (α ∧ γ)) ∧ (γ ∨ (α ∧ β)))
= α ∨ ((α ∧ β) ∨ (α ∧ γ))
= α,

we derive that α[2] = α. But from item (iii) we have σ(α) < σ(δ),
while from item (iv) we have σ(α[2]) = σ(δ), which together conflict
with α[2] = α. This contradiction completes the proof. �

The following result defines the class of varieties satisfying a non-
trivial congruence identity by a 3-variable Maltsev condition.

Theorem 8.13. Let V be a variety. The following conditions are
equivalent.

(1) V satisfies a nontrivial congruence identity.
(2) V |=con α ∩ (β ◦ γ) ⊆ (γ ∨ (α ∧ β)) ◦ (β ∨ (α ∧ γ)).
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(3) There is a positive integer k and ternary terms d0,. . . , d2k+1,
e0,. . . , e2k+1, p such that V satisfies the following equations:
(i) d0(x, y, z) ≈ p(x, y, z) ≈ e0(x, y, z);

(ii) di(x, y, y) ≈ di+1(x, y, y) and ei(x, x, y) ≈ ei+1(x, x, y) for
even i;

(iii) di(x, x, y) ≈ di+1(x, x, y), di(x, y, x) ≈ di+1(x, y, x),
ei(x, y, y) ≈ ei+1(x, y, y) and ei(x, y, x) ≈ ei+1(x, y, x) for
odd i;

(iv) d2k+1(x, y, z) ≈ x and e2k+1(x, y, z) ≈ z.

Proof. For locally finite varieties, this result is part of Theo-
rem 9.8 of [34]. The proof given there shows that items (2) and (3) are
equivalent for any variety, and that the idempotent Maltsev condition
in item (3) fails in the variety of semilattices. Therefore (3)=⇒(1),
according to Theorem 7.15.

What remains to show is that (1)=⇒(2). Let F = FV(x, y, z) and
set α := CgF(x, z), β := CgF(x, y), and γ := CgF(y, z). Since (x, z) is
a generic element of α ∩ (β ◦ γ) it will suffice to prove that (x, z) ∈
(γ ∨ (α ∧ β)) ◦ (β ∨ (α ∧ γ)). Since α ∨ β = α ∨ γ = β ∨ γ =: δ,
the intervals I[β ∨ (α ∧ γ), δ] and I[γ ∨ (α ∧ β), δ] are SD∨-failures,

and therefore β ∨ (α ∧ γ)
s∼ δ s∼ γ ∨ (α ∧ β) (Theorem 8.5). Since these

congruences are solvably related, they permute (Theorem 6.16). Since
(x, y) ∈ β ∨ (α ∧ γ) and (y, z) ∈ γ ∨ (α ∧ β), we get that

(x, z) ∈ (β ∨ (α ∧ γ)) ◦ (γ ∨ (α ∧ β)) = (γ ∨ (α ∧ β)) ◦ (β ∨ (α ∧ γ)).

�

8.3. Congruence Join Semidistributivity

The main purpose of this section is to prove that a variety is con-
gruence join semidistributive if and only if it is both congruence meet
semidistributive and satisfies a nontrivial congruence identity. Thus,
congruence join semidistributive varieties are exactly those varieties
whose members have no congruences that are ‘abelian’ in any of the
senses that have been introduced.

Theorem 8.14. Let V be a variety. The following conditions are
equivalent.

(1) V is congruence join semidistributive.
(2) If A ∈ V and α, β, γ ∈ Con(A), then

α ∩ (β ◦ γ) ⊆ β ∨ (α ∧ γ) .

(3) There is a positive integer k and ternary terms d0, . . . , dk such
that V satisfies the following equations:
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(i) d0(x, y, z) ≈ x;
(ii) di(x, y, y) ≈ di+1(x, y, y) and di(x, y, x) ≈ di+1(x, y, x) for

even i < k;
(iii) di(x, x, y) ≈ di+1(x, x, y), for odd i < k;
(iv) dk(x, y, z) ≈ z.

(4) V satisfies an idempotent Maltsev condition that fails in any
nontrivial variety of modules and in the variety of semilattices.

(5) No member of V has a nontrivial abelian or rectangular con-
gruence.

(6) V is congruence meet semidistributive and satisfies a nontrivial
congruence identity.

(7) There is a positive integer N such that if A ∈ V and α, β, γ ∈
Con(A), then

α ∨ (β ∧ γ) ≈ (α ∨ βN) ∧ (α ∨ γN) .

(8) CON(V) is a join semidistributive variety of lattices.
(9) M3,D2 6∈ CON(V).

(10) M3 and D2 are not embeddable in Con(A) for any A ∈ V.

Proof. We prove (1)–(6) cyclically, and then complete the proof
by showing that ((1) & (6)) =⇒(7) =⇒(8) =⇒(9) =⇒(10) =⇒(6).

Assume that (1) holds and that A ∈ V has congruences α, β and
γ. Choose any (a, c) ∈ α ∩ (β ◦ γ). There exists b ∈ A such that
a ≡β b ≡γ c. Let α′ = CgA(a, c), β ′ = CgA(a, b) and γ′ = CgA(b, c).
Since the generating pairs are related by α, β and γ respectively, we get
that α′ ≤ α, β ′ ≤ β and γ′ ≤ γ. The congruence β ′ ∨ α′ is generated
by (a, c) and (a, b), so it is the congruence on A generated by X ×X
where X = {a, b, c}. Similarly β ′ ∨ γ′ is the congruence generated by
X ×X, so β ′ ∨α′ = β ′ ∨ γ′. By (1), we get that this congruence is also
β ′ ∨ (α′ ∧ γ′). Since this congruence contains (a, c), we get that

(a, c) ∈ β ′ ∨ (α′ ∧ γ′) ≤ β ∨ (α ∧ γ),

where the inequality follows from the monotonicity of the lattice op-
erations. This argument shows that (a, c) ∈ β ∨ (α ∧ γ) for every
(a, c) ∈ α ∩ (β ◦ γ), so α ∩ (β ◦ γ) ⊆ β ∨ (α ∧ γ) and (2) holds.

For (2) =⇒(3), let p = α ∩ (β ◦ γ), r = β ∨ (α ∧ γ), and let ri be
the {◦,∧}-word obtained from r by replacing ∨ with i-fold relational
product. Then the congruence inclusion of (2) has the form p ⊆ ⋃i∈ω ri
with the ri’s increasing. By the remark after Theorem 4.7, such a con-
gruence inclusion is associated to a Maltsev condition. The method
described in the proof of Theorem 4.7 for producing the Maltsev con-
dition yields the one in item (3).
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To prove that (3) =⇒(4), we will show that the idempotent Maltsev
condition in (3) fails in every nontrivial variety of modules and in the
variety of semilattices. Assume that M is the variety of all modules
over the ring R, and that M satisfies the Maltsev condition in item
(3). Since each di is a module term, it must be that di(x, y, z) =
aix + biy + ciz for some ai, bi, ci ∈ R. Since di(x, x, x) ≈ x, we get
that aix + bix + cix ≈ (ai + bi + ci)x ≈ x holds in any M ∈ M, hence
ai+ bi + ci = 1 in R. The first equation in (3)(ii) implies that ai = ai+1

for even i, the second equation in (3)(ii) implies that bi = bi+1 for even
i, and with the equations of the type ai + bi + ci = 1 we derive that
ci = ci+1 holds for all even i. The equation from (3)(iii) implies that
ci = ci+1 holds for odd i, so ci = ci+1 for all i. But the equation from
(3)(i) implies that c0 = 0, while the equation from (3)(iv) implies that
ck = 1. Altogether we derive that 0 = 1 in R, soM is a trivial variety
of modules.

Now suppose that S is the variety of semilattices, and that S satis-
fies the Maltsev condition in (3). Choose k minimal for the condition
in (3) to be satisfied in S. By equations (3)(i) and (3)(iv), it must
be that k > 0. If k > 0 is even, then by equation (3)(iii) we find
that dk−1(x, x, y) ≈ dk(x, x, y) ≈ y, which for semilattices implies that
dk−1(x, y, z) ≈ z. Thus we can delete the term dk and have a shorter
sequence of terms satisfying the conditions in (3). If k > 0 is odd,
then by the equations in (3)(ii) that dk−1 does not depend on its first
variable (since dk−1(x, y, y) ≈ dk(x, y, y) ≈ y), and does not depend
on its second variable (since dk−1(x, y, x) ≈ dk(x, y, x) ≈ x). There-
fore dk−1(x, y, z) ≈ dk−1(z, z, z) ≈ z, and we can again shorten the
sequence. It follows that the equations in (3) cannot be satisfied by
semilattice terms. Thus (3)=⇒(4).

It follows from Theorem 8.1 (10)=⇒(4) that if V satisfies an idem-
potent Maltsev condition that fails in every nontrivial variety of mod-
ules, then V omits abelian congruences. It follows from Theorem 5.25
that if V satisfies an idempotent Maltsev condition that fails in the
variety of semilattices, then V omits rectangular tolerances (hence V
omits rectangular congruences by Theorem 5.22). Thus (4)=⇒(5).

If (5) holds, then V has no abelian congruence, so from (4)=⇒(1) of
Theorem 8.1 we derive that V is congruence meet semidistributive. V
also has no rectangular congruence, or tolerance, so by Theorems 5.25
and 7.15 we have that V satisfies a nontrivial congruence identity.
Hence (6) holds.

Now suppose that V is congruence meet semidistributive and sat-
isfies a nontrivial congruence identity. The latter supposition implies
that the SD∨-failures in congruence lattices of members of V are abelian,
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according to Theorem 8.5. But the former supposition implies that
there are no abelian intervals in congruence lattices of members of V,
according to (1)=⇒(4) of Theorem 8.1. This shows that there are no
SD∨-failures at all, which means of course that V is congruence join
semidistributive.

Now that the first six items of the theorem have been shown to be
equivalent, we turn to the seventh. Assume that (1) and (the equivalent
property) (6) hold. From (6) and Theorem 8.3 we know that there is
a positive integer M such that the identity

zM (x, y, z) ≈ zM+1(x, y, z)

holds in all congruence lattices of members of V. Thus, if α, β and γ
are as in the statement of item (7), and βk := yk(α, β, γ) and γk :=
zk(α, β, γ), then βM = βM+1 and γM = γM+1. This implies that
α∨ βM ≥ α∨ γM+1 = α∨ γM , and similarly that α∨ γM ≥ α∨ βM , so
α ∨ βM = α ∨ γM . Since (1) holds, we have

α ∨ (βM ∧ γM) = α ∨ βM .

But β ∧ γ ≤ βM ∧ γM ≤ βM ≤ β and β ∧ γ ≤ βM ∧ γM ≤ γM ≤ γ, so
βM ∧ γM = β ∧ γ. Therefore

α ∨ (β ∧ γ) = α ∨ βM ,

and similarly

α ∨ (β ∧ γ) = α ∨ γM .

This proves that α ∨ (β ∧ γ) = (α ∨ βM)∧ (α ∨ γM) for the fixed value
of M provided by Theorem 8.3.

If item (7) holds, then CON(V) satisfies the weakened distributive
law x ∨ (y ∧ z) ≈ (x ∨ yN) ∧ (x ∨ zN ) for some N . We claim that
any lattice satisfying this law is join semidistributive. Indeed, if L is
a lattice, a, b, c ∈ L, and bk := yk(a, b, c) and ck := zk(a, b, c), then it
may be shown by induction that if a∨ b = a∨ c, then bk = b and ck = c
for all k. Thus, if d := a ∨ b = a ∨ c, the identity in (7) implies that

a ∨ (b ∧ c) = (a ∨ bN ) ∧ (a ∨ cN) = (a ∨ b) ∧ (a ∨ c) = d .

Since a, b, c ∈ L were chosen arbitrarily, L is join semidistributive.
Item (8) implies item (9) because M3 and D2 are not join semidis-

tributive.
Item (9) implies item (10) because sublattices of Con(A) belong

to CON(V).
Assume that item (10) holds. Since M3 is not embeddable in the

congruence lattice of any member of V, it follows from Theorem 8.1 that
V is congruence meet semidistributive. Since D2 is not embeddable in
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the congruence lattice of any member of V, it follows from Theorem 8.11
that V satisfies a nontrivial congruence identity. Thus item (6) holds.
The proof is complete. �

This theorem provides a positive solution to Problem 2.18 of [40]
from this theorem, which we extract as the following corollary.

Corollary 8.15. The class of congruence join semidistributive
varieties is definable by a Maltsev condition.

Proof. By Theorem 8.14 (1)⇐⇒(3). �
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CHAPTER 9

Residually Small Varieties

A variety is residually large if it has a proper class of subdirectly
irreducible members, otherwise it is residually small. Our primary
goal in this chapter is to prove that a residually small variety satisfies
a congruence identity if and only if it is congruence modular. (David
Hobby and Ralph McKenzie proved essentially the same result for lo-
cally finite varieties in Chapter 10 of [34].) Our result nearly com-
pletes the classification of congruence varieties associated to residually
small varieties. In Section 9.2, we apply the result to show that almost
congruence distributive varieties cannot have a Taylor term.

9.1. Residual Smallness and Congruence Modularity

Lemma 9.1. Let V be a variety that satisfies a nontrivial congruence
identity. If A ∈ V has congruences α, β and γ that generate a sublattice
ismomorphic to N5 in Con(A), as depicted in Figure 9.1, then
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Figure 9.1.

(1) C(α, β; δ) holds, and
(2) C(β, α; δ) fails in the following strong way: For some (β, β; 0)-

pair (a, b) (cf. Definition 3.13) there is a polynomial f(x,y)
and tuples c α d such that

f(b, c) ≡δ f(b,d) ,

but

f(a, c) 6≡δ f(a,d) .
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Proof. Item (1) follows from Theorem 2.19 (8), since

β ∧ (α ∨ (β ∧ δ)) ≤ δ .

For (2), assume instead that

f(b, c) ≡δ f(b,d) =⇒ f(a, c) ≡δ f(a,d)

holds for every (β, β; 0)-pair (a, b). Then by transitivity this implication
holds whenever a ≥β b. But since V has no algebra with a rectangular
tolerance, Theorem 5.23 (1)⇐⇒(4) guarantees that the set of pairs
(a, b) satisfying a ≥β b contains β. Thus, if this implication holds
for every f and every choice of tuples c α d whenever (a, b) ∈ β,
then C(β, α; δ) holds. But C(β, α; δ) does not hold, as we proved in
Theorem 4.16 (2). Therefore f , c and d exist. �

As it happens, the properties described in conditions (1) and (2)
of Lemma 9.1 are all that are needed to establish the existence of a
proper class of subdirectly irreducibles in V. (We no longer need the
assumption that V satisfies a nontrivial congruence identity.)

Theorem 9.2. Let V be a variety. Assume that A ∈ V has con-
gruences δ < α and a tolerance T such that

(1) C(α, T ; δ) holds, and
(2) For some (T, T ; 0)-pair (a, b) there is a polynomial f(x,y) and

tuples c α d such that

v := f(b, c) ≡δ f(b,d) =: v′ ,

but
u := f(a, c) 6≡δ f(a,d) =: u′ .

Then V is residually large.

Proof. Both (1) and (2) continue to hold if we factor by δ, so there
is no loss in generality in assuming that δ = 0. (Under this assumption
v = v′.) We now explain how to construct a subdirectly irreducible
algebra in V of cardinality ≥ κ for any infinite cardinal κ.

Let B be the subalgebra of Aκ consisting of those κ-tuples a where
(ai, aj) ∈ T for all coordinates i < j < κ. For any a ∈ A let â denote
the constant κ-tuple satisfying (â)i = a for all i. Clearly â ∈ B for all
a ∈ A. Let N = {u, v} and let N ′ = {u′, v′}. Since (a, b) ∈ T it follows
that (u, v) = (f(a, c), f(b, c)) ∈ T and (u′, v′) ∈ T , so Nκ ∪ (N ′)κ ⊆ B.
For an element z of Nκ denote by z′ the element of (N ′)κ obtained
from z by priming the entry in each coordinate. Furthermore, let

G = {(z, z′) ∈ B2 | z ∈ Nκ \ {û}} ,
and let ψ = CgB(G).
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Claim 9.3. The pair (û, û′) is not contained in ψ.

As u 6= u′, it is sufficient to prove that {û} is a singleton ψ-class.
For this we must show that if (z, z′) ∈ G and p is a unary polynomial
of B, then

p(z) = û ⇐⇒ p(z′) = û .

Since z ∈ Nκ \ {û}, at least one coordinate of z is v. If zi = v, then
z′i = v′ = v, so z and z′ agree in the i-th coordinate. This implies that
p(z) and p(z′) agree in the i-th coordinate. We now argue that these
tuples also agree in the j-th coordinate for every other j < κ. There is
nothing to prove for those coordinates where zj = v = v′ = z′j, by the
above argument, so we consider only those j where zj = u and z′j = u′.

The polynomial p of B comes from a term g(x,y), where appropri-
ate parameters from B are substituted in place of y in every coordinate.
Denote by r and s the parameters occurring at the i-th and the j-th
coordinate, respectively. Then r T s holds by the definition of B. We
have to prove that g(u, s) = g(u′, s), and we have either

(9.1) g(u, s) = u = g(v, r)

(in case p(z) = û), or

(9.2) g(u′, s) = u = g(v′, r)

(in case p(z′) = v̂). However C(α, T ; 0) holds and c α d, so

(g(u, s) =) g(f(a, c), s) = g(f(b, c), r) (= g(v, r))

is equivalent to

(g(u′, s) =) g(f(a,d), s) = g(f(b,d), r) (= g(v′, r)) .

Since at least one of (9.1) or (9.2) holds, this implies that g(u, s) =
g(v, r) and g(u′, s) = g(v′, r) both hold. Moreover, v = v′ implies that
g(v, r) = g(v′, r), so in fact

g(u, s) = g(v, r) = g(v′, r) = g(u′, s) .

Thus g(u, s) = g(u′, s) indeed holds, completing the argument that
p(z) = û ⇐⇒ p(z′) = û holds. This proves the claim.

Since (û, û′) /∈ ψ we may extend ψ to a congruence ψ0 ≥ ψ that
is maximal with respect to (û, û′) /∈ ψ0. Then B/ψ0 is a subdirectly
irreducible algebra in V. We claim that |B/ψ0| ≥ κ.

In order to prove that B/ψ0 is as large as this, we need only to
exhibit κ elements of B that are pairwise incongruent modulo ψ0. We
introduce the following notation for certain elements of Aκ: for i < j <
κ, and for arbitrary elements a, b, c ∈ A let [a, b, c]i,j denote the tuple
whose k-th coordinate is a for 0 ≤ k < i, is b for i ≤ k < j, and is
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c for j ≤ k < κ. (Note that [a, b, c]i,j ∈ B if a, b and c are pairwise
T -related.) Similarly, if a,b, c ∈ An, then let [a,b, c]i,j denote the
member of Bn whose `-th coordinate is [a`, b`, c`]

i,j for 1 ≤ ` ≤ n. We
shall omit the superscripts i, j if we think it is clear from the context
what they are.

As (a, b) is a (T, T ; 0)-pair, there exists a T, T -matrix
[
f(p, r) f(p, s)
f(q, r) f(q, s)

]
=

[
∗ a
a b

]
.

Claim 9.4. For each 0 < i < j < κ the tuples [q,p,p] and [q,q,p]
are not ψ0-congruent in every coordinate.

Suppose that they are. Then in the algebra B we have that

f([q,p,p], [r, s, s]) ψ0 f([q,q,p], [r, s, s]) ,

that is,

[a, a, a] ψ0 [a, b, a] .

Therefore

[u, u, u] = f([a, a, a], [c, c, c]) ψ0 f([a, b, a], [c, c, c]) = [u, v, u] ,

and

[u′, u′, u′] = f([a, a, a], [d,d,d]) ψ0 f([a, b, a], [d,d,d]) = [u′, v′, u′] .

But then

û = [u, u, u] ψ0 [u, v, u] ψ [u′, v′, u′] ψ0 [u′, u′, u′] = û′

By transitivity and the fact that ψ0 ≥ ψ, this yields (û, û′) ∈ ψ0,
contradicting the choice of ψ0. So the claim is proved.

To finish the proof, let m be the length of the tuples p and q, and
define a mapping h : κ→ (B/ψ0)m in the following way. Let i < k < κ,
and

h(i) = [q,p,p]i,k/ψm0 .

The value of h(i) does not depend on k because the last two blocks
of coordinates of the tuple [q,p,p] are both p. We claim that h is
injective. Indeed, suppose that i < j < κ. Then

h(i) = [q,p,p]i,j/ψm0

and

h(j) = [q,q,p]i,j/ψm0 ,

and these tuples are different by Claim 9.4. Therefore h is indeed
injective, so κ ≤ |B/ψ0|m = |B/ψ0|, proving the theorem. �
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We obtain the main theorem of this chapter by combining Lemma 9.1
with Theorem 9.2.

Theorem 9.5. A residually small variety satisfies a congruence
identity if and only if it is congruence modular.

Remark 9.6. We describe a three-step plan for classifying all con-
gruence varieties associated to residually small varieties.

(1) Prove that if V is residually small and satisfies a nontrivial
congruence identity, then V is congruence modular.

(2) Prove that if V is residually small and congruence modular,
then V is congruence distributive or CON(V) = CON(M) for
some variety M of modules.

(3) Classify the congruence varieties of varieties of modules.

Theorem 9.5 accomplishes Step (1). Step (3) was accomplished by
Gábor Czédli and George Hutchinson in [36]. Partial results on Step (2)
were obtained by Alan Day and Emil W. Kiss in [12]. Namely, Day
and Kiss accomplished Step (2) under the further assumption that V
is either locally finite or locally solvable. Their ideas extend a lit-
tle further than these two cases, but fall short of fully accomplishing
Step (2). Therefore, we pose the problem of accomplishing Step (2) in
full generality.

Problem 9.7. Show that if V is residually small and congruence
modular, then V is congruence distributive or CON(V) = CON(M)
for some variety M of modules.

If this is proved, then we will know that the congruence varieties
CON(V) of residually small varieties V are precisely

• the variety of all lattices — e.g. when V is the (residually
small) variety of sets,

• CON(M) where M is a variety of modules,

• the variety of distributive lattices — e.g. when V is the (resid-
ually small) variety of distributive lattices, and

• the variety of trivial lattices (e.g. when V is a trivial variety).

9.2. Almost Congruence Distributive Varieties

A variety is affine complete if every congruence preserving func-
tion on every member is a polynomial. In [43], Kalle Kaarli and Alden
Pixley announced that any affine complete variety is residually finite
and has the property that every finitely generated subvariety is con-
gruence distributive. At the time it was not known whether the entire
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variety had to be congruence distributive. Pixley then introduced the
following concept.

Definition 9.8. A variety V is almost congruence distributive,
or ACD, if it is residually finite, every finitely generated subvariety is
congruence distributive, but V itself is not congruence distributive.

Pixley asked if there exists an ACD variety. A negative answer would,
of course, show that every affine complete variety is congruence dis-
tributive.

Kaarli and Ralph McKenzie proved in [42] that every affine com-
plete variety is congruence distributive, but it remains open whether
there is an ACD variety. This is still an interesting question, since we
know very little about how local properties of a variety, like the struc-
ture of the subdirectly irreducible algebras, imply global properties,
such as the satisfaction of a Maltsev condition.

In this section we prove that an ACD variety satisfies no nontrivial
idempotent Maltsev condition. This implies that if an ACD variety
exists, then some member has a nontrivial strongly abelian congruence,
but for some reason such congruences do not show up in any subdirectly
irreducible algebra or even in any subvariety generated by a finite set
of subdirectly irreducible algebras.

Theorem 9.9. Let V be a variety satisfying a nontrivial idempotent
Maltsev condition.

(1) If every subdirectly irreducible algebra in V generates a subvari-
ety satisfying a nontrivial congruence identity, then V satisfies
a nontrivial congruence identity.

(2) If every subdirectly irreducible algebra in V generates a con-
gruence join semidistributive subvariety, then V is congruence
join semidistributive.

Now assume also that V is residually small.

(1)’ If every subdirectly irreducible algebra in V generates a sub-
variety satisfying a nontrivial congruence identity, then V is
congruence modular.

(2)’ If every subdirectly irreducible algebra in V generates a con-
gruence join semidistributive subvariety, then V is congruence
distributive.

   
Callout
use a different symbol here.

   
Line



9.2. ALMOST CONGRUENCE DISTRIBUTIVE VARIETIES 191

Proof. If each subdirectly irreducible algebra in V generates a
subvariety satisfying a nontrivial congruence identity, then by The-
orem 7.15 each subdirectly irreducible algebra in V has a Hobby–
McKenzie term. By Theorem 5.25 the rectangular tolerances on sub-
directly irreducible members of V are trivial. Corollary 5.20 guaran-
tees that no algebra in V has a rectangular tolerance. Reusing The-
orems 5.25 and 7.15, we get that V satisfies a nontrivial congruence
identity. This proves (1).

For (2), if every subdirectly irreducible in V generates a congruence
join semidistributive subvariety, then no subdirectly irreducible algebra
has a nontrivial rectangular or abelian tolerance. By part (1), this
implies that V satisfies a nontrivial congruence identity, hence V has a
weak difference term according to Corollary 6.3. This shows that the
hypotheses of Corollary 6.9 are met, so from the fact that no subdirectly
irreducible algebra has an abelian tolerance we may derive that no
algebra in V has an abelian tolerance. By Theorem 8.14 (5)=⇒(1) it
follows that V is congruence join semidistributive.

Items (1)’ and (2)’ follow from items (1) and (2) using Theorem 9.5.
�

Corollary 9.10. An ACD variety satisfies no nontrivial idempo-
tent Maltsev condition.

Proof. This follows from Theorem 9.9 (2)’ and the definition of
an ACD variety. �

Theorem 9.9 suggests the following problem.

Problem 9.11. Suppose that V satisfies a nontrivial idempotent
Maltsev condition, and every subdirectly irreducible member of V gen-
erates a congruence modular subvariety. Must V be congruence mod-
ular? (We are interested in the case where V is residually large.)

The answer to Problem 9.11 is affirmative if V is locally finite.
Indeed, it follows from tame congruence theory that the following con-
ditions are equivalent for a locally finite variety:

(1) V is congruence modular.
(2) The minimal sets of the finite algebras are of type 2, 3 or 4

and have empty tails.
(3) The minimal sets of the finite subdirectly irreducible algebras

are of type 2, 3 or 4 and have empty tails.
(4) Each finite subdirectly irreducible algebra generates a congru-

ence modular subvariety.
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However, the modular law is special in this regard, because of its link
with the empty tails condition. We expect that for identities weaker
than modularity the problem analogous to Problem 9.11 will have a
negative answer.

Another problem is suggested by the proof of Theorem 9.9.

Problem 9.12. Suppose that V has a Taylor term. If some al-
gebra in V has a nontrivial abelian tolerance, must some subdirectly
irreducible algebra in V have a nontrivial abelian tolerance?
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congruence —, 30
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