HW 4.

In this assignment we work over ZF (without assuming the Axiom of Choice).

A set X is Dedekind Finite if every injective function $f: X \to X$ is surjective. Otherwise X is Dedekind infinite.

A set A is A morphous if it is infinite and every subset of A is finite or cofinite.

- 1. (Kai Morton, Orlando Reyes) Show that X is Dedekind infinite iff there is an injective function $f: \omega \to X$.
- 2. (Nick Cooper, Ben Kitchen)
 - (a) Show that an amorphous set is Dedekind finite.
 - (b) Show that if A is amorphous, then $|A| < |A \times A|$.
- 3. (Jonathan Bayley, Khizar Pasha)
 Show that an amorphous set cannot be totally ordered. (Hence, it cannot be wellordered.)
- 4. (Mattan Feldman, Kai Morton) Show that if A is amorphous, then $\mathcal{P}(A)$ is Dedekind finite.
- 5. (Everyone!)

Suppose that A is an amorphous set. Explain how to construct from A an inductively ordered poset with no maximal element. (This shows directly that Zorn's Lemma must fail in the presence of an amorphous set.)