HW 3. 1. (Mattan Feldman, Orlando Reyes) Show that the following statement is equivalent over ZFC to CH: The real plane \mathbb{R}^2 may be partitioned into two cells, $\{A, B\}$, in such a way that any horizontal line in \mathbb{R}^2 has countable intersection with A and any vertical line in \mathbb{R}^2 has countable intersection with B. - 2. (Nick Cooper, Khizar Pasha) Show that if κ and λ are infinite cardinals and $\kappa < \lambda$, then there is an infinite cardinal μ such that $\mu^{\kappa} < \mu^{\lambda}$. - 3. (Jonathan Bayley, Kai Morton) Show that the following statement is equivalent over ZFC to GCH: If κ is any infinite cardinal, then $\kappa^{\mathrm{cf}(\kappa)} = \kappa^+$. - 4. (Orlando Reyes, Ben Kitchen) Let \mathbb{F} be a field of size κ and let V be an \mathbb{F} -vector space of infinite dimension λ . - (a) Show that the dimension of the dual space V^* is κ^{λ} . - (b) Use the Main Theorem of Cardinal Arithmetic to simplify $\dim_{\mathbb{F}}(V^*)$ in the case where $|\mathbb{F}| = \beth_{\omega_1}$ and $\dim_{\mathbb{F}}(V) = \aleph_0$.