HW 1.

- 1. (Jonathan Bayley, Nick Cooper) Explain why each one of the following is a proper class.
 - (a) The class \mathcal{C} of all sets.
 - (b) The class \mathcal{D} of all 1-element sets.
 - (c) The class \mathcal{E} of all groups.

(You should express both \mathcal{C} , \mathcal{D} , \mathcal{E} as classes, and then that they are proper.)

2. (Mattan Feldman, Ben Kitchen) Let T be the theory axiomatized by all the axioms of ZFC except the Axiom of Foundation. ($T = \text{ZFC} \setminus \{\text{Fnd}\}$.) From T, prove that the Axiom of Foundation is equivalent to the following statement:

There is no function f with domain ω such that $f(n+1) \in f(n)$ for all n.

- 3. (Kai Morton, Khizar Pasha) Explain why, if V is a model of ZFC, the natural numbers object in V will satisfy the first-order Peano axioms.
- 4. (Orlando Reyes, Jonathan Bayley) Prove that $m^{n+k} = m^n \cdot m^k$. (You may assume all the laws of <u>successor</u> and <u>addition</u> that we proved.)