The Reflection Theorem

Lemma 15.4, NST.

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V.

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

(a) Each φ_i is absolute for M, N.

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $Proof(i) \Rightarrow (ii)$:

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $Proof(i) \Rightarrow (ii)$: Choose $\bar{y} \in M$.

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $Proof(i)\Rightarrow (ii)$: Choose $\bar{y}\in M$. From $(\forall x\in M)\varphi_j^N(x,\bar{y})$ we derive $(\forall x\in M)\varphi_j^M(x,\bar{y}) \ (=\varphi_i^M(\bar{y}))$ by downward absoluteness applied to φ_j .

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii) \text{: } \operatorname{Choose} \ \bar{y} \in M. \ \operatorname{From} \ (\forall x \in M) \varphi_j^N(x,\bar{y}) \ \text{we derive} \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \ \text{by downward absoluteness applied to} \ \varphi_j. \ \text{Then we derive} \ (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \ \text{by upward absoluteness applied to} \ \varphi_i. \end{array}$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x,\bar{y}) \to (\forall x \in N)\varphi_j^N(x,\bar{y}).]$$

 $Proof(i)\Rightarrow(ii)$: Choose $\bar{y}\in M$. From $(\forall x\in M)\varphi_j^N(x,\bar{y})$ we derive $(\forall x\in M)\varphi_j^M(x,\bar{y})$ $(=\varphi_i^M(\bar{y}))$ by downward absoluteness applied to φ_j . Then we derive $(\varphi_i^N(\bar{y})=)$ $(\forall x\in N)\varphi_j^N(x,\bar{y})$ by upward absoluteness applied to φ_i . $Proof(ii)\Rightarrow(i)$:

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_i(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

Proof (i) \Rightarrow (ii): Choose $\bar{y} \in M$. From $(\forall x \in M)\varphi_i^N(x,\bar{y})$ we derive $(\forall x \in M)\varphi_i^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y}))$ by downward absoluteness applied to φ_i . Then we derive $(\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_i^N(x, \bar{y})$ by upward absoluteness applied to φ_i .

 $Proof(ii) \Rightarrow (i)$: Induction on complexity,

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $Proof(i)\Rightarrow (ii)$: Choose $\bar{y}\in M$. From $(\forall x\in M)\varphi_j^N(x,\bar{y})$ we derive $(\forall x\in M)\varphi_j^M(x,\bar{y})$ $(=\varphi_i^M(\bar{y}))$ by downward absoluteness applied to φ_j . Then we derive $(\varphi_i^N(\bar{y})=)$ $(\forall x\in N)\varphi_j^N(x,\bar{y})$ by upward absoluteness applied to φ_i .

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $Proof(i)\Rightarrow (ii)$: Choose $\bar{y}\in M$. From $(\forall x\in M)\varphi_j^N(x,\bar{y})$ we derive $(\forall x\in M)\varphi_j^M(x,\bar{y})$ $(=\varphi_i^M(\bar{y}))$ by downward absoluteness applied to φ_j . Then we derive $(\varphi_i^N(\bar{y})=)$ $(\forall x\in N)\varphi_j^N(x,\bar{y})$ by upward absoluteness applied to φ_i .

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x,\bar{y}) \to (\forall x \in N)\varphi_j^N(x,\bar{y}).]$$

 $Proof(i)\Rightarrow (ii)$: Choose $\bar{y}\in M$. From $(\forall x\in M)\varphi_j^N(x,\bar{y})$ we derive $(\forall x\in M)\varphi_j^M(x,\bar{y})$ $(=\varphi_i^M(\bar{y}))$ by downward absoluteness applied to φ_j . Then we derive $(\varphi_i^N(\bar{y})=)$ $(\forall x\in N)\varphi_j^N(x,\bar{y})$ by upward absoluteness applied to φ_i .

$$\varphi_i^M(\bar{y}) \quad \leftrightarrow (\forall x \in M) \varphi_j^M(x, \bar{y})$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x,\bar{y}) \to (\forall x \in N)\varphi_j^N(x,\bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii): \text{Choose } \bar{y} \in M. \text{ From } (\forall x \in M) \varphi_j^N(x,\bar{y}) \text{ we derive } \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \text{ by downward absoluteness applied to } \varphi_j. \text{ Then we derive } (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \text{ by upward absoluteness applied to } \varphi_i. \end{array}$

$$\varphi_i^M(\bar{y}) \quad \leftrightarrow (\forall x \in M) \varphi_i^M(x,\bar{y}) \tag{Defn of Rel}$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x,\bar{y}) \to (\forall x \in N)\varphi_j^N(x,\bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii): \text{Choose } \bar{y} \in M. \text{ From } (\forall x \in M) \varphi_j^N(x,\bar{y}) \text{ we derive } \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \text{ by downward absoluteness applied to } \varphi_j. \text{ Then we derive } (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \text{ by upward absoluteness applied to } \varphi_i. \end{array}$

$$\begin{array}{ll} \varphi_i^M(\bar{y}) & \leftrightarrow (\forall x \in M) \varphi_j^M(x,\bar{y}) \\ & \leftrightarrow (\forall x \in M) \varphi_j^N(x,\bar{y}) \end{array} \tag{Defn of Rel}$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x,\bar{y}) \to (\forall x \in N)\varphi_j^N(x,\bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii): \text{Choose } \bar{y} \in M. \text{ From } (\forall x \in M) \varphi_j^N(x,\bar{y}) \text{ we derive } \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \text{ by downward absoluteness applied to } \varphi_j. \text{ Then we derive } (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \text{ by upward absoluteness applied to } \varphi_i. \end{array}$

$$\begin{array}{ll} \varphi_i^M(\bar{y}) & \leftrightarrow (\forall x \in M) \varphi_j^M(x,\bar{y}) & \text{(Defn of Rel)} \\ & \leftrightarrow (\forall x \in M) \varphi_i^N(x,\bar{y}) & \text{(IH)} \end{array}$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x,\bar{y}) \to (\forall x \in N)\varphi_j^N(x,\bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii): \text{Choose } \bar{y} \in M. \text{ From } (\forall x \in M) \varphi_j^N(x,\bar{y}) \text{ we derive } \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \text{ by downward absoluteness applied to } \varphi_j. \text{ Then we derive } (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \text{ by upward absoluteness applied to } \varphi_i. \end{array}$

$$\begin{array}{ll} \varphi_i^M(\bar{y}) & \leftrightarrow (\forall x \in M) \varphi_j^M(x,\bar{y}) & \text{(Defn of Rel)} \\ & \leftrightarrow (\forall x \in M) \varphi_j^N(x,\bar{y}) & \text{(IH)} \\ & \leftrightarrow (\forall x \in N) \varphi_i^N(x,\bar{y}) & \end{array}$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x,\bar{y}) \to (\forall x \in N)\varphi_j^N(x,\bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii) \text{: } \operatorname{Choose} \ \bar{y} \in M. \ \operatorname{From} \ (\forall x \in M) \varphi_j^N(x,\bar{y}) \ \text{we derive} \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \ \text{by downward absoluteness applied to} \ \varphi_j. \ \text{Then we derive} \ (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \ \text{by upward absoluteness applied to} \ \varphi_i. \end{array}$

$$\begin{array}{ll} \varphi_i^M(\bar{y}) & \leftrightarrow (\forall x \in M) \varphi_j^M(x,\bar{y}) & \text{(Defn of Rel)} \\ & \leftrightarrow (\forall x \in M) \varphi_j^N(x,\bar{y}) & \text{(IH)} \\ & \leftrightarrow (\forall x \in N) \varphi_i^N(x,\bar{y}) & \text{(b)} \end{array}$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii): \text{Choose } \bar{y} \in M. \text{ From } (\forall x \in M) \varphi_j^N(x,\bar{y}) \text{ we derive } \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \text{ by downward absoluteness applied to } \varphi_j. \text{ Then we derive } (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \text{ by upward absoluteness applied to } \varphi_i. \end{array}$

$$\begin{array}{lll} \varphi_i^M(\bar{y}) & \leftrightarrow (\forall x \in M) \varphi_j^M(x,\bar{y}) & \text{(Defn of Rel)} \\ & \leftrightarrow (\forall x \in M) \varphi_j^N(x,\bar{y}) & \text{(IH)} \\ & \leftrightarrow (\forall x \in N) \varphi_j^N(x,\bar{y}) & \text{(b)} \\ & \leftrightarrow \varphi_i^N(x,\bar{y}) & \end{array}$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x) \varphi_j(x, \bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $\begin{array}{l} \operatorname{Proof}(i) \Rightarrow (ii): \text{Choose } \bar{y} \in M. \text{ From } (\forall x \in M) \varphi_j^N(x,\bar{y}) \text{ we derive } \\ (\forall x \in M) \varphi_j^M(x,\bar{y}) \ (= \varphi_i^M(\bar{y})) \text{ by downward absoluteness applied to } \varphi_j. \text{ Then we derive } (\varphi_i^N(\bar{y}) =) \ (\forall x \in N) \varphi_j^N(x,\bar{y}) \text{ by upward absoluteness applied to } \varphi_i. \end{array}$

$$\begin{array}{lll} \varphi_i^M(\bar{y}) & \leftrightarrow (\forall x \in M) \varphi_j^M(x,\bar{y}) & \text{(Defn of Rel)} \\ & \leftrightarrow (\forall x \in M) \varphi_j^N(x,\bar{y}) & \text{(IH)} \\ & \leftrightarrow (\forall x \in N) \varphi_j^N(x,\bar{y}) & \text{(b)} \\ & \leftrightarrow \varphi_i^N(x,\bar{y}) & \text{(Defn of Rel)} \end{array}$$

Lemma 15.4, NST. Suppose that $M \subseteq N$ are classes in V. Let $\varphi_0, \ldots, \varphi_n$ be a list of formulas that is closed under the formation of subformulas. The following are equivalent:

- (a) Each φ_i is absolute for M, N.
- (b) Whenever $\varphi_i \equiv (\forall x)\varphi_j(x,\bar{y})$ we have

$$(\forall \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \to (\forall x \in N)\varphi_j^N(x, \bar{y}).]$$

 $Proof(i)\Rightarrow (ii)$: Choose $\bar{y}\in M$. From $(\forall x\in M)\varphi_j^N(x,\bar{y})$ we derive $(\forall x\in M)\varphi_j^M(x,\bar{y})$ $(=\varphi_i^M(\bar{y}))$ by downward absoluteness applied to φ_j . Then we derive $(\varphi_i^N(\bar{y})=)$ $(\forall x\in N)\varphi_j^N(x,\bar{y})$ by upward absoluteness applied to φ_i .

$$\begin{array}{lll} \varphi_i^M(\bar{y}) & \leftrightarrow (\forall x \in M) \varphi_j^M(x,\bar{y}) & \text{(Defn of Rel)} \\ & \leftrightarrow (\forall x \in M) \varphi_j^N(x,\bar{y}) & \text{(IH)} \\ & \leftrightarrow (\forall x \in N) \varphi_j^N(x,\bar{y}) & \text{(b)} \\ & \leftrightarrow \varphi_i^N(x,\bar{y}) & \text{(Defn of Rel)} \end{array}$$

The previous result implies that if M, N-absoluteness fails somewhere in the sequence $\varphi_0, \ldots, \varphi_n$, then $\exists \varphi_i$ such that

The previous result implies that if M, N-absoluteness fails somewhere in the sequence $\varphi_0, \ldots, \varphi_n$, then $\exists \varphi_j$ such that

$$(\exists \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \land (\exists x \in N)(\neg \varphi_j^N(x, \bar{y}))]$$

holds.

The previous result implies that if M, N-absoluteness fails somewhere in the sequence $\varphi_0, \ldots, \varphi_n$, then $\exists \varphi_j$ such that

$$(\exists \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \land (\exists x \in N)(\neg \varphi_j^N(x, \bar{y}))]$$

holds. The last existential quantifier asserts that,

The previous result implies that if M, N-absoluteness fails somewhere in the sequence $\varphi_0, \ldots, \varphi_n$, then $\exists \varphi_j$ such that

$$(\exists \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \land (\exists x \in N)(\neg \varphi_j^N(x, \bar{y}))]$$

holds. The last existential quantifier asserts that, for some $\bar{y} \in M$ and some φ_j ,

The previous result implies that if M, N-absoluteness fails somewhere in the sequence $\varphi_0, \ldots, \varphi_n$, then $\exists \varphi_j$ such that

$$(\exists \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \land (\exists x \in N)(\neg \varphi_j^N(x, \bar{y}))]$$

holds. The last existential quantifier asserts that, for some $\bar{y} \in M$ and some φ_j , there is some $x \in N$ that witnesses the failure of $\varphi_j^N(x, \bar{y})$,

The previous result implies that if M, N-absoluteness fails somewhere in the sequence $\varphi_0, \ldots, \varphi_n$, then $\exists \varphi_j$ such that

$$(\exists \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \land (\exists x \in N)(\neg \varphi_j^N(x, \bar{y}))]$$

holds. The last existential quantifier asserts that, for some $\bar{y} \in M$ and some φ_j , there is some $x \in N$ that witnesses the failure of $\varphi_j^N(x, \bar{y})$, even though the preceding clause of the sentence expresses that there is no such $x \in M$.

The previous result implies that if M, N-absoluteness fails somewhere in the sequence $\varphi_0, \ldots, \varphi_n$, then $\exists \varphi_j$ such that

$$(\exists \bar{y} \in M)[(\forall x \in M)\varphi_j^N(x, \bar{y}) \land (\exists x \in N)(\neg \varphi_j^N(x, \bar{y}))]$$

holds. The last existential quantifier asserts that, for some $\bar{y} \in M$ and some φ_j , there is some $x \in N$ that witnesses the failure of $\varphi_j^N(x,\bar{y})$, even though the preceding clause of the sentence expresses that there is no such $x \in M$. Let's call such an $x \ (= x_{\bar{y}} \in N - M)$ a 'witness' to nonabsoluteness for M,N.

Theorem 15.45, NST.

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$.

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} \ (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \dots, \varphi_n$ of formulas we have

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} \ (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Sketch of Proof: Let $\alpha = \alpha_0$.

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Sketch of Proof: Let $\alpha = \alpha_0$. If $\varphi_0, \ldots, \varphi_n$ are not absolute for Z_{α_0}, \mathbf{Z} , then there is a witness $x \in \mathbf{Z}$ to this.

Theorem 15.45, NST. Let $Z : \mathbf{ON} \to V : \alpha \to Z_{\alpha}$ be a class function satisfying

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Sketch of Proof: Let $\alpha=\alpha_0$. If $\varphi_0,\ldots,\varphi_n$ are not absolute for Z_{α_0},\mathbf{Z} , then there is a witness $x\in\mathbf{Z}$ to this. Choose a least $\alpha_1>\alpha_0$ such that, whenever there is a witness to Z_{α_0},\mathbf{Z} -nonabsoluteness, a witness can be found in Z_{α_1} .

Theorem 15.45, NST. Let $Z : \mathbf{ON} \to V : \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} \ (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n]$$
 are absolute for the pair Z_β, \mathbf{Z} .

Sketch of Proof: Let $\alpha=\alpha_0$. If $\varphi_0,\ldots,\varphi_n$ are not absolute for Z_{α_0} , ${\bf Z}$, then there is a witness $x\in {\bf Z}$ to this. Choose a least $\alpha_1>\alpha_0$ such that, whenever there is a witness to Z_{α_0} , ${\bf Z}$ -nonabsoluteness, a witness can be found in Z_{α_1} . This is possible, since Z_{α_0} is a set, hence there are only set-many witnesses to be found. These can be found in set-many Z_{γ} 's, $\gamma>\alpha_0$. The relevant subscripts γ form a set, any set of ordinals is bounded, and the Z_{γ} 's are nested, so there will be a least $\alpha_1>\alpha_0$ such that all needed witnesses can be found in Z_{α_1} .

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Sketch of Proof: Let $\alpha=\alpha_0$. If $\varphi_0,\ldots,\varphi_n$ are not absolute for Z_{α_0} , ${\bf Z}$, then there is a witness $x\in {\bf Z}$ to this. Choose a least $\alpha_1>\alpha_0$ such that, whenever there is a witness to Z_{α_0} , ${\bf Z}$ -nonabsoluteness, a witness can be found in Z_{α_1} . This is possible, since Z_{α_0} is a set, hence there are only set-many witnesses to be found. These can be found in set-many Z_{γ} 's, $\gamma>\alpha_0$. The relevant subscripts γ form a set, any set of ordinals is bounded, and the Z_{γ} 's are nested, so there will be a least $\alpha_1>\alpha_0$ such that all needed witnesses can be found in Z_{α_1} . Using recusion over ω , construct an ω -sequence $\alpha=\alpha_0<\alpha_1<\cdots$ such that witnesses to Z_{α_i} , ${\bf Z}$ -nonabsoluteness can always be found in $Z_{\alpha_{i+1}}$.

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Sketch of Proof: Let $\alpha=\alpha_0$. If $\varphi_0,\ldots,\varphi_n$ are not absolute for Z_{α_0} , ${\bf Z}$, then there is a witness $x\in {\bf Z}$ to this. Choose a least $\alpha_1>\alpha_0$ such that, whenever there is a witness to Z_{α_0} , ${\bf Z}$ -nonabsoluteness, a witness can be found in Z_{α_1} . This is possible, since Z_{α_0} is a set, hence there are only set-many witnesses to be found. These can be found in set-many Z_{γ} 's, $\gamma>\alpha_0$. The relevant subscripts γ form a set, any set of ordinals is bounded, and the Z_{γ} 's are nested, so there will be a least $\alpha_1>\alpha_0$ such that all needed witnesses can be found in Z_{α_1} . Using recusion over ω , construct an ω -sequence $\alpha=\alpha_0<\alpha_1<\cdots$ such that witnesses to Z_{α_i} , ${\bf Z}$ -nonabsoluteness can always be found in $Z_{\alpha_{i+1}}$. Let $\beta=\bigcup_{i<\omega}\alpha_i$.

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Sketch of Proof: Let $\alpha=\alpha_0$. If $\varphi_0,\ldots,\varphi_n$ are not absolute for Z_{α_0} , ${\bf Z}$, then there is a witness $x\in {\bf Z}$ to this. Choose a least $\alpha_1>\alpha_0$ such that, whenever there is a witness to Z_{α_0} , ${\bf Z}$ -nonabsoluteness, a witness can be found in Z_{α_1} . This is possible, since Z_{α_0} is a set, hence there are only set-many witnesses to be found. These can be found in set-many Z_{γ} 's, $\gamma>\alpha_0$. The relevant subscripts γ form a set, any set of ordinals is bounded, and the Z_{γ} 's are nested, so there will be a least $\alpha_1>\alpha_0$ such that all needed witnesses can be found in Z_{α_1} . Using recusion over ω , construct an ω -sequence $\alpha=\alpha_0<\alpha_1<\cdots$ such that witnesses to Z_{α_i} , ${\bf Z}$ -nonabsoluteness can always be found in $Z_{\alpha_{i+1}}$. Let $\beta=\bigcup_{i<\omega}\alpha_i$. Now check that there can be no witnesses to Z_{β} , ${\bf Z}$ -nonabsoluteness.

Theorem 15.45, NST. Let $Z \colon \mathbf{ON} \to V \colon \alpha \to Z_{\alpha}$ be a class function satisfying

- $\bullet \quad \alpha \leq \beta \text{ implies } Z_{\alpha} \subseteq Z_{\beta}$

Define a class **Z** to be $\bigcup_{\alpha \in \mathbf{ON}} Z_{\alpha} (= \bigcup \mathrm{im}(Z))$. For any finite sequence $\varphi_0, \ldots, \varphi_n$ of formulas we have

$$(\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for the pair } Z_\beta, \mathbf{Z}.]$$

Sketch of Proof: Let $\alpha=\alpha_0$. If $\varphi_0,\ldots,\varphi_n$ are not absolute for Z_{α_0} , ${\bf Z}$, then there is a witness $x\in {\bf Z}$ to this. Choose a least $\alpha_1>\alpha_0$ such that, whenever there is a witness to Z_{α_0} , ${\bf Z}$ -nonabsoluteness, a witness can be found in Z_{α_1} . This is possible, since Z_{α_0} is a set, hence there are only set-many witnesses to be found. These can be found in set-many Z_{γ} 's, $\gamma>\alpha_0$. The relevant subscripts γ form a set, any set of ordinals is bounded, and the Z_{γ} 's are nested, so there will be a least $\alpha_1>\alpha_0$ such that all needed witnesses can be found in Z_{α_1} . Using recusion over ω , construct an ω -sequence $\alpha=\alpha_0<\alpha_1<\cdots$ such that witnesses to Z_{α_i} , ${\bf Z}$ -nonabsoluteness can always be found in $Z_{\alpha_{i+1}}$. Let $\beta=\bigcup_{i<\omega}\alpha_i$. Now check that there can be no witnesses to Z_{β} , ${\bf Z}$ -nonabsoluteness. \square

Corollary 15.6, NST.

Corollary 15.6, NST. For formulas $\varphi_0, \ldots, \varphi_n$,

Corollary 15.6, NST. For formulas $\varphi_0, \ldots, \varphi_n$,

$$ZF \vdash (\forall \alpha)(\exists \beta > \alpha)[\varphi_0, \dots, \varphi_n \text{ are absolute for } V_\beta, V_{\cdot}]$$

Theorem 15.7, NST.

Theorem 15.7, NST. Let V be a model of ZFC.

Theorem 15.7, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a class in V and $\varphi_0, \ldots, \varphi_n$ are formulas.

Theorem 15.7, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a class in V and $\varphi_0, \ldots, \varphi_n$ are formulas. If A is a set in \mathbf{Z} then there exists a set B in \mathbf{Z} such that $A \subseteq B \subseteq \mathbf{Z}, \varphi_0, \ldots, \varphi_n$ are absolute for B, \mathbf{Z} and $|B| \leq \max(\omega, |A|)$.

Theorem 15.9, NST.

Theorem 15.9, NST. Let V be a model of ZFC.

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0, \ldots, \varphi_n$ are sentences.

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0, \ldots, \varphi_n$ are sentences. If A is a transitive set in \mathbf{Z} then there exists a transitive set B in \mathbf{Z} such that $A \subseteq B \subseteq \mathbf{Z}, \varphi_0, \ldots, \varphi_n$ are absolute for B, \mathbf{Z} and $|B| \leq \max(\omega, |A|)$.

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0, \ldots, \varphi_n$ are sentences. If A is a transitive set in \mathbf{Z} then there exists a transitive set B in \mathbf{Z} such that $A \subseteq B \subseteq \mathbf{Z}, \varphi_0, \ldots, \varphi_n$ are absolute for B, \mathbf{Z} and $|B| \leq \max(\omega, |A|)$.

The proof uses the Mostowski Collapse Lemma.

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0, \ldots, \varphi_n$ are sentences. If A is a transitive set in \mathbf{Z} then there exists a transitive set B in \mathbf{Z} such that $A \subseteq B \subseteq \mathbf{Z}, \varphi_0, \ldots, \varphi_n$ are absolute for B, \mathbf{Z} and $|B| \leq \max(\omega, |A|)$.

The proof uses the Mostowski Collapse Lemma. (Sketch in class.)

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0,\ldots,\varphi_n$ are sentences. If A is a transitive set in \mathbf{Z} then there exists a transitive set B in \mathbf{Z} such that $A\subseteq B\subseteq \mathbf{Z}, \varphi_0,\ldots,\varphi_n$ are absolute for B,\mathbf{Z} and $|B|\leq \max(\omega,|A|)$.

The proof uses the Mostowski Collapse Lemma. (Sketch in class.) Monk does not identify this result in NST, but he begins discussing the function " $mos_{AR}(y)$ " after Lemma 12.28.

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0, \ldots, \varphi_n$ are sentences. If A is a transitive set in \mathbf{Z} then there exists a transitive set B in \mathbf{Z} such that $A \subseteq B \subseteq \mathbf{Z}, \varphi_0, \ldots, \varphi_n$ are absolute for B, \mathbf{Z} and $|B| \leq \max(\omega, |A|)$.

The proof uses the Mostowski Collapse Lemma. (Sketch in class.) Monk does not identify this result in NST, but he begins discussing the function " $\max_{AR}(y)$ " after Lemma 12.28. This is the Mostowski Collapse function.

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0, \ldots, \varphi_n$ are sentences. If A is a transitive set in \mathbf{Z} then there exists a transitive set B in \mathbf{Z} such that $A \subseteq B \subseteq \mathbf{Z}, \varphi_0, \ldots, \varphi_n$ are absolute for B, \mathbf{Z} and $|B| \leq \max(\omega, |A|)$.

The proof uses the Mostowski Collapse Lemma. (Sketch in class.) Monk does not identify this result in NST, but he begins discussing the function " $\max_{AR}(y)$ " after Lemma 12.28. This is the Mostowski Collapse function. Read the statements (and proofs?) of Lemmas 12.29-12.35.

Theorem 15.9, NST. Let V be a model of ZFC. Assume that \mathbf{Z} is a transitive class in V and $\varphi_0, \ldots, \varphi_n$ are sentences. If A is a transitive set in \mathbf{Z} then there exists a transitive set B in \mathbf{Z} such that $A \subseteq B \subseteq \mathbf{Z}, \varphi_0, \ldots, \varphi_n$ are absolute for B, \mathbf{Z} and $|B| \leq \max(\omega, |A|)$.

The proof uses the Mostowski Collapse Lemma. (Sketch in class.) Monk does not identify this result in NST, but he begins discussing the function " $\max_{AR}(y)$ " after Lemma 12.28. This is the Mostowski Collapse function. Read the statements (and proofs?) of Lemmas 12.29-12.35. The Mostowski Collapse Lemma is 12.32.

Theorem 15.11, NST.

Theorem 15.11, NST. Suppose that S is a consistent set of sentences containing ZFC.

Theorem 15.11, NST. Suppose that S is a consistent set of sentences containing ZFC. Expand the basic set-theoretic language by adding a constant symbol M.

Theorem 15.11, NST. Suppose that S is a consistent set of sentences containing ZFC. Expand the basic set-theoretic language by adding a constant symbol M. Then the following set of sentences is consistent:

Theorem 15.11, NST. Suppose that S is a consistent set of sentences containing ZFC. Expand the basic set-theoretic language by adding a constant symbol M. Then the following set of sentences is consistent:

$$S \cup \{M \text{ is transitive}\} \cup \{|M| = \omega\} \cup \{\varphi^M \mid \varphi \in S\}.$$

Theorem 15.11, NST. Suppose that S is a consistent set of sentences containing ZFC. Expand the basic set-theoretic language by adding a constant symbol M. Then the following set of sentences is consistent:

$$S \cup \{M \text{ is transitive}\} \cup \{|M| = \omega\} \cup \{\varphi^M \mid \varphi \in S\}.$$

This implies that if ZFC has a model, then there is a model V of ZFC that contains a <u>set</u> M that is a countable, transitive model of ZFC.

Theorem 15.11, NST. Suppose that S is a consistent set of sentences containing ZFC. Expand the basic set-theoretic language by adding a constant symbol M. Then the following set of sentences is consistent:

$$S \cup \{M \text{ is transitive}\} \cup \{|M| = \omega\} \cup \{\varphi^M \mid \varphi \in S\}.$$

This implies that if ZFC has a model, then there is a model V of ZFC that contains a <u>set</u> M that is a countable, transitive model of ZFC. (The bijection between M and ω that establishes the countability of M belongs to V, not M.)