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(3 € M)[(Vx € Mg} (,5) A (B € N) (=] (,7))]

holds. The last existential quantifier asserts that, for some y € M and some
©j, there is some x € N that witnesses the failure of <p§-v (z,y), even though
the preceding clause of the sentence expresses that there is no such x € M.
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Witnesses to nonabsoluteness

The previous result implies that if M, N-absoluteness fails somewhere in the
sequence o, . . . , ¢n, then Jp; such that

(3 € M)[(Vx € Mg} (,5) A (B € N) (=] (,7))]

holds. The last existential quantifier asserts that, for some y € M and some
©j, there is some x € N that witnesses the failure of <p§-v (z,y), even though
the preceding clause of the sentence expresses that there is no such x € M.
Let’s call such an « (= 23 € N — M) a ‘witness’ to nonabsoluteness for
M,N.
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Q o < Bimplies Z, C Zg

Q 7, =Up<y Zp, Alimit.
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Theorem 15.45, NST. Let Z: ON — V: a — Z, be a class function satisfying
Q o < Bimplies Z, C Zg
Q 7, =Up<y Zp, Alimit.

Define a class Z to be | J ,con Zo (= Jim(Z)). For any finite sequence oo, . . ., ¢n
of formulas we have

(Va)(38 > a)[wo, - - - , ¢r are absolute for the pair Zg, Z.]

Sketch of Proof: Let a = «y.
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(Va)(38 > a)[wo, - - - , ¢r are absolute for the pair Zg, Z.]

Sketch of Proof: Let o = . If o, . . ., ¢, are not absolute for Z,,, Z, then there is
a witness x € Z to this. Choose a least oy > «g such that, whenever there is a
witness to Z,,,, Z-nonabsoluteness, a witness can be found in Z,,, . This is possible,
since Z,, is a set, hence there are only set-many witnesses to be found. These can be
found in set-many Z,’s, v > . The relevant subscripts - form a set, any set of
ordinals is bounded, and the Z,’s are nested, so there will be a least av; > g such
that all needed witnesses can be found in Z,,, .
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Theorem 15.45, NST. Let Z: ON — V: a — Z, be a class function satisfying
Q o < Bimplies Z, C Zg
Q 7, =Up<y Zp, Alimit.

Define a class Z to be | J ,con Zo (= Jim(Z)). For any finite sequence oo, . . ., ¢n
of formulas we have

(Va)(38 > a)[wo, - - - , ¢r are absolute for the pair Zg, Z.]

Sketch of Proof: Let o = . If o, . . ., ¢, are not absolute for Z,,, Z, then there is
a witness x € Z to this. Choose a least oy > «g such that, whenever there is a
witness to Z,,,, Z-nonabsoluteness, a witness can be found in Z,,, . This is possible,
since Z,, is a set, hence there are only set-many witnesses to be found. These can be
found in set-many Z,’s, v > . The relevant subscripts - form a set, any set of
ordinals is bounded, and the Z,’s are nested, so there will be a least av; > g such
that all needed witnesses can be found in Z,, . Using recusion over w, construct an
w-sequence o = ap < o < -- - such that witnesses to Z,, , Z-nonabsoluteness can

always be found in Z,,,_, .
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Corollary 15.6, NST. For formulas ¢y, . . ., ©n,

ZF - (Ya)(38 > o)[po, - - -, pn are absolute for Vg, V]
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Theorem 15.7, NST. Let V be a model of ZFC. Assume that Z is a class in V'
and ¢y, . . ., p, are formulas.
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Theorem 15.7, NST. Let V be a model of ZFC. Assume that Z is a class in V'
and ¢y, . . . , @, are formulas. If A is a set in Z then there exists a set B in Z
such that A C B C Z, ¢y, . . ., p, are absolute for B, Z and

|B| < max(w, |A|).
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exists a transitive set B in Z such that A C B C Z, ¢y, . . . , (o, are absolute
for B,Z and | B| < max(w, |A|).
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exists a transitive set B in Z such that A C B C Z, ¢y, . . . , (o, are absolute
for B,Z and | B| < max(w, |A|).

The proof uses the Mostowski Collapse Lemma.
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not identify this result in NST, but he begins discussing the function
“mosar(y)” after Lemma 12.28.
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Guaranteeing transitivity

Theorem 15.9, NST. Let V be a model of ZFC. Assume that Z is a transitive
classin V and ¢y, . . ., ¢, are sentences. If A is a transitive set in Z then there
exists a transitive set B in Z such that A C B C Z, ¢y, . . . , (o, are absolute
for B,Z and | B| < max(w, |A|).

The proof uses the Mostowski Collapse Lemma. (Sketch in class.) Monk does
not identify this result in NST, but he begins discussing the function
“mosar(y)” after Lemma 12.28. This is the Mostowski Collapse function.
Read the stateements (and proofs?) of Lemmas 12.29-12.35. The Mostowski
Collapse Lemma is 12.32.
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Theorem 15.11, NST. Suppose that .S is a consistent set of sentences
containing ZFC. Expand the basic set-theoretic language by adding a constant

symbol M. Then the following set of sentences is consistent:

S U{M is transitive} U {|M| = w} U {pM | ¢ € S}.
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containing ZFC. Expand the basic set-theoretic language by adding a constant
symbol M. Then the following set of sentences is consistent:

S U{M is transitive} U {|M| = w} U {pM | ¢ € S}.

This implies that if ZFC has a model, then there is a model V' of ZFC that
contains a set M that is a countable, transitive model of ZFC.
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Theorem 15.11, NST. Suppose that .S is a consistent set of sentences
containing ZFC. Expand the basic set-theoretic language by adding a constant
symbol M. Then the following set of sentences is consistent:

S U{M is transitive} U {|M| = w} U {pM | ¢ € S}.

This implies that if ZFC has a model, then there is a model V' of ZFC that
contains a set M that is a countable, transitive model of ZFC. (The bijection
between M and w that establishes the countability of M belongs to V, not
M)
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