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Preliminaries about absoluteness

Lemma 15.4, NST. Suppose that M ⊆ N are classes in V . Let φ0, . . . , φn be a list
of formulas that is closed under the formation of subformulas. The following are
equivalent:

(a) Each φi is absolute for M, N .

(b) Whenever φi ≡ (∀x)φj(x, ȳ) we have

(∀ȳ ∈ M)[(∀x ∈ M)φN
j (x, ȳ) → (∀x ∈ N)φN

j (x, ȳ).]

Proof (i)⇒(ii): Choose ȳ ∈ M . From (∀x ∈ M)φN
j (x, ȳ) we derive

(∀x ∈ M)φM
j (x, ȳ) (= φM

i (ȳ)) by downward absoluteness applied to φj . Then we
derive (φN

i (ȳ) =) (∀x ∈ N)φN
j (x, ȳ) by upward absoluteness applied to φi.

Proof (ii)⇒(i): Induction on complexity, with the φi(ȳ) ≡ (∀x)φj(x, ȳ) step as
follows: Assume ȳ ∈ M .

φM
i (ȳ) ↔ (∀x ∈ M)φM

j (x, ȳ) (Defn of Rel)
↔ (∀x ∈ M)φN

j (x, ȳ) (IH)
↔ (∀x ∈ N)φN

j (x, ȳ) (b)
↔ φN

i (x, ȳ) (Defn of Rel) 2
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i (ȳ) ↔ (∀x ∈ M)φM
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j (x, ȳ) (b)
↔ φN
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j (x, ȳ) (b)
↔ φN
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follows: Assume ȳ ∈ M .
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i (ȳ) ↔ (∀x ∈ M)φM
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Proof (i)⇒(ii): Choose ȳ ∈ M . From (∀x ∈ M)φN
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φM
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j (x, ȳ) (IH)
↔ (∀x ∈ N)φN

j (x, ȳ) (b)
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i (x, ȳ) (Defn of Rel) 2

The Reflection Theorem 2 / 8



Preliminaries about absoluteness

Lemma 15.4, NST. Suppose that M ⊆ N are classes in V . Let φ0, . . . , φn be a list
of formulas that is closed under the formation of subformulas. The following are
equivalent:

(a) Each φi is absolute for M, N .

(b) Whenever φi ≡ (∀x)φj(x, ȳ) we have
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j (x, ȳ) by upward absoluteness applied to φi.

Proof (ii)⇒(i): Induction on complexity, with the φi(ȳ) ≡ (∀x)φj(x, ȳ) step as
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j (x, ȳ) (b)
↔ φN
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φM
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i (ȳ) =) (∀x ∈ N)φN
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j (x, ȳ) by upward absoluteness applied to φi.

Proof (ii)⇒(i): Induction on complexity, with the φi(ȳ) ≡ (∀x)φj(x, ȳ) step as
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j (x, ȳ) (IH)

↔ (∀x ∈ N)φN
j (x, ȳ) (b)
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j (x, ȳ) (Defn of Rel)
↔ (∀x ∈ M)φN

j (x, ȳ) (IH)
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i (x, ȳ) (Defn of Rel) 2

The Reflection Theorem 2 / 8



Preliminaries about absoluteness

Lemma 15.4, NST. Suppose that M ⊆ N are classes in V . Let φ0, . . . , φn be a list
of formulas that is closed under the formation of subformulas. The following are
equivalent:

(a) Each φi is absolute for M, N .

(b) Whenever φi ≡ (∀x)φj(x, ȳ) we have
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Proof (i)⇒(ii): Choose ȳ ∈ M . From (∀x ∈ M)φN
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i (ȳ) ↔ (∀x ∈ M)φM
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Witnesses to nonabsoluteness

The previous result implies that if M, N -absoluteness fails somewhere in the
sequence φ0, . . . , φn, then ∃φj such that

(∃ȳ ∈ M)[(∀x ∈ M)φN
j (x, ȳ) ∧ (∃x ∈ N)(¬φN

j (x, ȳ))]

holds. The last existential quantifier asserts that, for some ȳ ∈ M and some
φj , there is some x ∈ N that witnesses the failure of φN

j (x, ȳ), even though
the preceding clause of the sentence expresses that there is no such x ∈ M .
Let’s call such an x (= xȳ ∈ N − M) a ‘witness’ to nonabsoluteness for
M, N .
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(∃ȳ ∈ M)[(∀x ∈ M)φN
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Let’s call such an x (= xȳ ∈ N − M) a ‘witness’ to nonabsoluteness for
M, N .

The Reflection Theorem 3 / 8



Witnesses to nonabsoluteness

The previous result implies that if M, N -absoluteness fails somewhere in the
sequence φ0, . . . , φn, then ∃φj such that
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φj , there is some x ∈ N that witnesses the failure of φN
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Guaranteeing absoluteness

Theorem 15.45, NST. Let Z : ON → V : α → Zα be a class function satisfying

1 α ≤ β implies Zα ⊆ Zβ

2 Zλ =
⋃

β<λ Zβ , λ limit.

Define a class Z to be
⋃

α∈ON Zα (=
⋃

im(Z)). For any finite sequence φ0, . . . , φn

of formulas we have

(∀α)(∃β > α)[φ0, . . . , φn are absolute for the pair Zβ , Z.]

Sketch of Proof: Let α = α0. If φ0, . . . , φn are not absolute for Zα0 , Z, then there is
a witness x ∈ Z to this. Choose a least α1 > α0 such that, whenever there is a
witness to Zα0 , Z-nonabsoluteness, a witness can be found in Zα1 . This is possible,
since Zα0 is a set, hence there are only set-many witnesses to be found. These can be
found in set-many Zγ’s, γ > α0. The relevant subscripts γ form a set, any set of
ordinals is bounded, and the Zγ’s are nested, so there will be a least α1 > α0 such
that all needed witnesses can be found in Zα1 . Using recusion over ω, construct an
ω-sequence α = α0 < α1 < · · · such that witnesses to Zαi

, Z-nonabsoluteness can
always be found in Zαi+1 . Let β =

⋃
i<ω αi. Now check that there can be no

witnesses to Zβ , Z-nonabsoluteness. 2
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The Reflection Theorem

Corollary 15.6, NST. For formulas φ0, . . . , φn,

ZF ⊢ (∀α)(∃β > α)[φ0, . . . , φn are absolute for Vβ, V.]
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A refinement

Theorem 15.7, NST. Let V be a model of ZFC. Assume that Z is a class in V
and φ0, . . . , φn are formulas. If A is a set in Z then there exists a set B in Z
such that A ⊆ B ⊆ Z, φ0, . . . , φn are absolute for B, Z and
|B| ≤ max(ω, |A|).
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Guaranteeing transitivity

Theorem 15.9, NST. Let V be a model of ZFC. Assume that Z is a transitive
class in V and φ0, . . . , φn are sentences. If A is a transitive set in Z then there
exists a transitive set B in Z such that A ⊆ B ⊆ Z, φ0, . . . , φn are absolute
for B, Z and |B| ≤ max(ω, |A|).

The proof uses the Mostowski Collapse Lemma. (Sketch in class.) Monk does
not identify this result in NST, but he begins discussing the function
“mosAR(y)” after Lemma 12.28. This is the Mostowski Collapse function.
Read the stateements (and proofs?) of Lemmas 12.29-12.35. The Mostowski
Collapse Lemma is 12.32.
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Cumulative result

Theorem 15.11, NST. Suppose that S is a consistent set of sentences
containing ZFC. Expand the basic set-theoretic language by adding a constant
symbol M . Then the following set of sentences is consistent:

S ∪ {M is transitive} ∪ {|M | = ω} ∪ {φM | φ ∈ S}.

This implies that if ZFC has a model, then there is a model V of ZFC that
contains a set M that is a countable, transitive model of ZFC. (The bijection
between M and ω that establishes the countability of M belongs to V , not
M .)
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