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(2) (Yn)(Sp — Sp41) is true.

The validity of this method relies on the fact that N is the intersection of all
inductive sets.

Justification for the method of proof by induction:

Find a formula ¢(x) so that (Vn)(¢(n) <> Sy). Then observe that, if Items
(1) and (2) from above are true, then

{r eN|p(x)}

is an inductive subset of N. Hence the displayed set is N itself.
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This function is not easy to define any other way.

Recursion Theorem. For any set A, any ag € A, and any function
G: A x N — A, there exists a unique function F': N — A satisfying

Q@ F(0) = ag
@ F(S(n)) =G(F(n),n)foralln € N.
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o (Stage 3.) Verify the details:

@ F satisfies the function rule.

Q dom(F)=N,im(F) C A.

© F satisfies the recursion.

© Any function F’: N — A that satisfies the recursion must equal F'.

All parts of Stage 3 can be proved by induction.
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