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Induction

Everybody knows that to prove a sequence of statements

S0, S1, S2, . . .

it suffices to prove only that

(1) S0 is true, and

(2) (∀n)(Sn → Sn+1) is true.

The validity of this method relies on the fact that N is the intersection of all
inductive sets.
Justification for the method of proof by induction:
Find a formula φ(x) so that (∀n)(φ(n) ↔ Sn). Then observe that, if Items
(1) and (2) from above are true, then

{x ∈ N | φ(x)}

is an inductive subset of N. Hence the displayed set is N itself.
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Recursion Theorem

The function F (n) = n! is easy to define ‘recusively’. The function
F : N → N : n 7→ n! is defined by:

1 F (0) = 1
2 F (n + 1) = (n + 1) · F (n).

This function is not easy to define any other way.

Recursion Theorem. For any set A, any a0 ∈ A, and any function
G : A × N → A, there exists a unique function F : N → A satisfying

1 F (0) = a0
2 F (S(n)) = G(F (n), n) for all n ∈ N.
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Idea of proof

The proof of the Recursion Theorem appears on page 48 of Hrbacek and Jech
and in a more general form on page 98 of Monk’s NST. Here we sketch the
idea:

(Stage 1.) Define the set P of all ‘partial computations’. A partial
computation is a function tm : m → A that satisfies the recursion on its
domain. This stage relies on the Axiom of Comprehension.

(Stage 2.) Form the union F =
⋃

P of the set constructed in the
previous step. This stage relies on the Axiom of Union.
(Stage 3.) Verify the details:

1 F satisfies the function rule.
2 dom(F ) = N, im(F ) ⊆ A.
3 F satisfies the recursion.
4 Any function F ′ : N → A that satisfies the recursion must equal F .

All parts of Stage 3 can be proved by induction.
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(Stage 3.) Verify the details:

1 F satisfies the function rule.
2 dom(F ) = N, im(F ) ⊆ A.
3 F satisfies the recursion.
4 Any function F ′ : N → A that satisfies the recursion must equal F .

All parts of Stage 3 can be proved by induction.
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