
7. Ordinals, I

In this chapter we introduce the ordinals and give basic facts about them.
A set A is transitive iff ∀x ∈ A∀y ∈ x(y ∈ A); in other words, iff every element of

A is a subset of A. This is a very important notion in the foundations of set theory, and
it is essential in our definition of ordinals. An ordinal number, or simply an ordinal, is a
transitive set of transitive sets. We use the first few Greek letters to denote ordinals. If
α, β, γ are ordinals and α ∈ β ∈ γ, then α ∈ γ since γ is transitive. This partially justifies
writing α < β instead of α ∈ β when α and β are ordinals. This helps the intuition in
thinking of the ordinals as kinds of numbers. We also define α ≤ β iff α < β or α = β.

By a vacuous implication we have:

Proposition 7.1. ∅ is an ordinal.

Because of this proposition, the empty set is a number; it will turn out to be the first
nonnegative integer, the first ordinal, and the first cardinal number. For this reason, we
will use 0 and ∅ interchangably, trying to use 0 when numbers are involved, and ∅ when
they are not.

Proposition 7.2. If α is an ordinal, then so is α ∪ {α}.

Proof. If x ∈ y ∈ α ∪ {α}, then x ∈ y ∈ α or x ∈ y = α. Since α is transitive, x ∈ α
in either case. So α∪{α} is transitive. Clearly every member of α∪{α} is transitive.

We denote α ∪ {α} by α+′ 1. After introducing addition of ordinals, it will turn out that
α+ 1 = α+′ 1 for every ordinal α, so that the prime can be dropped. This ordinal α+′ 1
is the successor of α. We define 1 = 0+′ 1, 2 = 1+′ 1, etc. (up through 9; no further since
we do not want to try to justify decimal notation).

Proposition 7.3. If A is a set of ordinals, then
S

A is an ordinal.

Proof. Suppose that x ∈ y ∈
S
A. Choose z ∈ A such that y ∈ z. Then z is an

ordinal, and x ∈ y ∈ z, so x ∈ z; hence x ∈
S
A. Thus

S
A is transitive.

If u ∈
S

A, choose v ∈ A such that u ∈ v. then v is an ordinal, so u is transitive.

We sometimes write sup(A) for
S
A. In fact,

S
A is the least ordinal ≥ each member of

A. We prove this shortly.

Proposition 7.4. Every member of an ordinal is an ordinal.

Proof. Let α be an ordinal, and let x ∈ α. Then x is transitive since all members of
α are transitive. Suppose that y ∈ x. Then y ∈ α since α is transitive. So y is transitive,
since all members of α are transitive.

Theorem 7.5. ∀x(x /∈ x).

Proof. Suppose that x is a set such that x ∈ x. Let y = {x}. By the foundation
axiom, choose z ∈ y such that z ∩ y = ∅. But z = x, so x ∈ z ∩ y, contradiction.
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Theorem 7.6. There does not exist a set which has every ordinal as a member.

Proof. Suppose to the contrary that A is such a set. Let B = {x ∈ A : x is an
ordinal}. Then B is a set of transitive sets and B itself is transitive. Hence B is an
ordinal. So B ∈ A. It follows that B ∈ B. contradicting Theorem 7.5.

Theorem 7.6 is what happens in our axiomatic framework to the Burali-Forti paradox.

Theorem 7.7. If α and β are ordinals, then α = β, α ∈ β, or β ∈ α.

Proof. Suppose that this is not true, and let α and β be ordinals such that α 6= β,
α /∈ β, and β /∈ α. Let A = (α +′ 1) ∪ (β +′ 1). Define B = {γ ∈ A : ∃δ ∈ A[γ 6= δ, γ /∈ δ,
and δ /∈ γ]}. Thus α ∈ B, since we can take δ = β. So B 6= ∅. By the foundation axiom,
choose γ ∈ B such that γ ∩ B = ∅. Let C = {δ ∈ A : γ 6= δ, γ /∈ δ, and δ /∈ γ}. So C 6= ∅
since γ ∈ B. By the foundation axiom choose δ ∈ C such that δ ∩ C = ∅. We will now
show that γ = δ, which is a contradiction.

Suppose that ε ∈ γ. Then ε /∈ B. Clearly ε ∈ A, so it follows that ∀ϕ ∈ A[ε = ϕ or
ε ∈ ϕ or ϕ ∈ ε]. Since δ ∈ A we thus have ε = δ or ε ∈ δ or δ ∈ ε. If ε = δ then δ ∈ γ,
contradiction. If δ ∈ ε, then δ ∈ γ since γ is transitive, contradiction. So ε ∈ δ. This
proves that γ ⊆ δ.

Suppose that ε ∈ δ. Then ε /∈ C. It follows that γ = ε or γ ∈ ε or ε ∈ γ. If γ = ε
then γ ∈ δ, contradiction. If γ ∈ ε then γ ∈ δ since δ is transitive, contradiction. So ε ∈ γ.
This proves that δ ⊆ γ.

Hence δ = γ, contradiction.

Proposition 7.8. α ≤ β iff α ⊆ β.

Proof. ⇒: Assume that α ≤ β and x ∈ α. Then x < α ≤ β, so x < β since β is
transitive. Hence x ∈ β. Thus α ⊆ β.

⇐: Assume that α ⊆ β. If β < α, then β < β, hence β ∈ β, contradicting Theorem
7.5. Hence α ≤ β by Theorem 7.7.

Proposition 7.9. α < β iff α ⊂ β.

Proof. α < β iff (α ≤ β and α 6= β) iff (α ⊆ β and α 6= β) (by Proposition 7.8) iff
α ⊂ β.

Proposition 7.10. α < β iff α+′ 1 ≤ β.

Proof. ⇒: Assume that α < β. If β < α +′ 1, then β ∈ α ∪ {α}, so β ∈ α or β = α.
Since α ∈ β, this implies that β ∈ β, contradicting Theorem 7.5. Hence by Theorem 7.7,
α+′ 1 ≤ β.

⇐: Assume that α+′ 1 ≤ β. Then α < α+′ 1 ≤ β, so α < β.

Proposition 7.11. There do not exist ordinals α, β such that α < β < α+′ 1.

Theorem 7.12. If A is a set of ordinals, then α ≤
S
A for each α ∈ A, and if β is an

ordinal such that α ≤ β for all α ∈ A then
S

A ≤ β.
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