7. Ordinals, I

In this chapter we introduce the ordinals and give basic facts about them.

A set A is transitive iff Vo € AVy € x(y € A); in other words, iff every element of
A is a subset of A. This is a very important notion in the foundations of set theory, and
it is essential in our definition of ordinals. An ordinal number, or simply an ordinal, is a
transitive set of transitive sets. We use the first few Greek letters to denote ordinals. If
a, 3,7 are ordinals and « € 8 € «y, then «a € « since 7 is transitive. This partially justifies
writing o < (8 instead of o € 8 when « and 8 are ordinals. This helps the intuition in
thinking of the ordinals as kinds of numbers. We also define a < g iff « < f or a = .

By a vacuous implication we have:

Proposition 7.1. () is an ordinal. O

Because of this proposition, the empty set is a number; it will turn out to be the first
nonnegative integer, the first ordinal, and the first cardinal number. For this reason, we
will use 0 and () interchangably, trying to use 0 when numbers are involved, and () when
they are not.

Proposition 7.2. If a is an ordinal, then so is a U {a}.

Proof. If z € y € aU{a}, then z € y € a or x € y = . Since « is transitive, x € «
in either case. So aU{a} is transitive. Clearly every member of aU{a} is transitive. O

We denote a U {a} by a+" 1. After introducing addition of ordinals, it will turn out that
a+1=a+'1 for every ordinal «, so that the prime can be dropped. This ordinal o +' 1
is the successor of a. We define 1 =0+'1,2=14'1, etc. (up through 9; no further since
we do not want to try to justify decimal notation).

Proposition 7.3. If A is a set of ordinals, then |J A is an ordinal.

Proof. Suppose that x € y € |JA. Choose z € A such that y € z. Then z is an
ordinal, and x € y € z, so z € z; hence z € | JA. Thus |J 4 is transitive.
If u € |J A, choose v € A such that u € v. then v is an ordinal, so u is transitive. O

We sometimes write sup(A) for (JA. In fact, | J A is the least ordinal > each member of
A. We prove this shortly.
Proposition 7.4. FEvery member of an ordinal is an ordinal.

Proof. Let a be an ordinal, and let x € o. Then z is transitive since all members of
« are transitive. Suppose that y € x. Then y € a since « is transitive. So y is transitive,
since all members of « are transitive. [

Theorem 7.5. Vx(z ¢ x).

Proof. Suppose that x is a set such that x € z. Let y = {x}. By the foundation
axiom, choose z € y such that 2Ny = (. But z = z, so x € z Ny, contradiction. ]
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Theorem 7.6. There does not exist a set which has every ordinal as a member.

Proof. Suppose to the contrary that A is such a set. Let B = { € A : z is an
ordinal}. Then B is a set of transitive sets and B itself is transitive. Hence B is an
ordinal. So B € A. It follows that B € B. contradicting Theorem 7.5. O

Theorem 7.6 is what happens in our axiomatic framework to the Burali-Forti paradox.

Theorem 7.7. If « and B are ordinals, then o = 3, a € 3, or B € a.

Proof. Suppose that this is not true, and let a and 8 be ordinals such that « # £,
a¢p,and B¢ a. Let A= (a+ 1)U (B+'1). Define B={ye A:35€ A[y #J, v ¢,
and ¢ ¢ v]}. Thus a € B, since we can take 6 = 5. So B # (). By the foundation axiom,
choose v € B such that yN B=0. Let C={6 € A:v# 5, v¢ d,and § ¢ v}. So C #
since v € B. By the foundation axiom choose § € C such that 6 N C = (). We will now
show that v = §, which is a contradiction.

Suppose that € € 4. Then ¢ ¢ B. Clearly € € A, so it follows that Yy € Ale = ¢ or
e€gporpc€e]. Since 6 € A we thus have e =dore €dord €e. If e =4 then o € ~,
contradiction. If & € e, then § € 7 since v is transitive, contradiction. So € € §. This
proves that v C 4.

Suppose that € € §. Then € ¢ C. It follows that y =cory€core €. If y =¢
then v € 9, contradiction. If v € € then v € § since ¢ is transitive, contradiction. So € € ~.
This proves that § C ~.

Hence 6 = ~y, contradiction. O

Proposition 7.8. a < g iff a C 3.

Proof. =: Assume that a < g and x € . Then z < a < 3, so x < 8 since [ is
transitive. Hence z € 8. Thus a C .

«<: Assume that o C 3. If 8 < «, then 8 < 8, hence 8 € 3, contradicting Theorem
7.5. Hence o < 8 by Theorem 7.7. O

Proposition 7.9. a < 8 iff a C 3.

Proof. a < g iff (e < S and a # ) iff (o« C B and a # () (by Proposition 7.8) iff
o C . O
Proposition 7.10. o < B iff a +' 1 < .

Proof. =: Assume that « < 8. If $ < a+'1, then € aU{a},so f€aor f=a.
Since « € (5, this implies that 5 € 3, contradicting Theorem 7.5. Hence by Theorem 7.7,
a+'1<8.

<: Assume that o +'1 < 8. Thena < a+'1 <, s0 a < . O

Proposition 7.11. There do not exist ordinals o, 8 such that « < 8 < o+’ 1. ]

Theorem 7.12. If A is a set of ordinals, then oo < |JA for each a € A, and if B is an
ordinal such that o < B for all « € A then |JA < .
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