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Goal

Our goal is to prove that M [G] is a c.t.m., assuming that M is c.t.m.. The
strategy will be: to show that Axiom A holds in M [G], find a statement A′

that ‘mirrors’ Axiom A in M , meaning that M satisfies A′ iff M [G] satisfies
A. We do this because M satisfies the axioms, so we have hypotheses to
prove things in M which we do not have in M [G].
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The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order.

For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .”

This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order,

P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order,

P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M ,

σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP ,

p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P ,

and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M ,

if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



The Forcing Relation

Let M be a c.t.m., and let P = (P,≤, 1) ∈ M be a forcing order. For each
formula φ(v0, . . . , vm−1) in the language of set theory, we define another
formula

p ⊩P,M φ(σ0, . . . , σm−1)

which is read “p forces φ(σ0, . . . , σm−1) with respect to P and M .” This
states that

P is a forcing order, P ∈ M , σ0, . . . , σm−1 ∈ MP , p ∈ P , and for
every filter G ⊆ P which is P-generic over M , if p ∈ G, then the
formula φM [G](v0, . . . , vm−1) (= the relativization of φ to M [G])
holds for the elements σ0G, . . . , σ(m−1)G.

The Forcing Theorem 3 / 9



But . . .

To make this work in M , we have to avoid the part that says “. . . for every
filter G ⊆ P which is P-generic over M , . . . ” since the P-generic filters G
need not be elements of M . We address that by finding a different relation ⊩∗

such that

⊩∗ is equivalent to ⊩, and

⊩∗ can be defined in any c.t.m. M .

This will be done by generalizing the usual complete Boolean algebra of truth
values ⟨{0, 1}; ∧,∨,¬, 0, 1⟩ for logic to a different complete Boolean algebra
RO(P) = ⟨RO(P ); ∧,∨,¬, 0, 1⟩, and assigning truth values to formulas in
this Boolean algebra.
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Regular open sets

Let X = ⟨X; T ⟩ be a topological space. For each open set O ∈ T , let O⊥ be
the union of open sets disjoint from O. O⊥ is then the largest open set in T
that is disjoint from O. Call O⊥⊥ the regularization of O.

Exercises. Show

1 O 7→ O⊥⊥ is a closure operator on X . (The closed elements are called
regular open sets.)

2 O is regular iff O = int(cl(O)).
3 The algebra RO(X) = ⟨RO(X); ∧,∨,¬, 0, 1⟩ of regular open sets of

⟨X; T ⟩ is a complete Boolean algebra.
4 When |X| = 1, RO(X) is the 2-element BA.
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Mapping P to RO(P)

A forcing poset P = ⟨P ; ≤, 1⟩ is a topological space under the dual of the
Alexandroff topology. (Open sets = Downsets.) For each p ∈ P , the principal
downset (p] is the least open set containing p. Define e(p) = (p]⊥⊥ = the
regularization of the principal downset determined by p. This yields an
order-preserving function e : P → RO(P).

Exercise.

1 Describe the regular open sets when P is a chain.
2 Describe the regular open sets when P is an antichain with a top element

adjoined.

We shall define a Boolean truth value [[φ(σ0, . . . , σm−1)]] ∈ RO(P) for each
formula φ and for σ0, . . . , σm−1 ∈ MP . The relation
e(p) ⊆ [[φ(σ0, . . . , σm−1)]] will be denoted p ⊩∗ φ(σ0, . . . , σm−1). This
relation will mirror the forcing relation in M .
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The Forcing Theorem

Theorem. Let M be a c.t.m., let P ∈ M be a forcing order, and let G ⊆ P be
a P-generic filter over M . For any formula φ with all free variables among
v0, . . . , vm−1 and for any σ0, . . . , σm−1 ∈ MP , the following conditions are
equivalent:

1 φ(σ0G, . . . , σ(m−1)G) holds in M [G].
2 There is a p ∈ G such that

(
p ⊩∗ φ(σ0, . . . , σm−1)

)M .
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Assigning truth values to formulas: atomic formulas

Theorem. Let P = ⟨P ; ≤, 1⟩ be a forcing order, and e(p) = (p]⊥⊥. There
exist two class functions VP × VP → RO(P), denoted

(σ, τ) 7→ [[σ = τ ]] and (σ, τ) 7→ [[σ ∈ τ ]], (∗)

such that the following hold for all σ, τ ∈ VP :

[[σ = τ ]] =
∧

(ξ,p)∈τ

(e(p) → [[ξ ∈ σ]]) ∧
∧

(η,q)∈σ

(e(q) → [[η ∈ τ ]]), (†)

[[σ ∈ τ ]] =
∨

(ξ,p)∈τ

(e(p) ∧ [[σ = ξ]]). (‡)

These two functions have to be defined simultaneously by recursion. This may
be accomplished with a single function F : 2 × VP × VP → RO(P) defined
by recursion, and [[x = y]] means F(0, x, y) while [[x ∈ y]] means F(1, x, y).
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Assigning truth values to formulas: arbitrary formulas

For arbitrary formulas ϕ, ψ (with all free variables among v0, . . . , vm−1) and
for all σ0, . . . , σm−1 ∈ VP , define Boolean truth values by recursion:

1 [[¬ϕ(σ0, . . . , σm−1)]] := [[ϕ(σ0, . . . , σm−1)]]′.
2 [[ϕ(σ0, . . . , σm−1) ∧ ψ(σ0, . . . , σm−1)]] := [[ϕ(σ0, . . . , σm−1)]] ∧ [[ψ(σ0, . . . , σm−1)]].
3 [[(∀x)ϕ(σ0, . . . , σm−1, x)]] :=

∧
τ∈VP [[ϕ(σ0, . . . , σm−1, τ)]].
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