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Our goal is to prove that M [G] is a c.t.m., assuming that M is c.t.m.. The
strategy will be: to show that Axiom A holds in M[G], find a statement A’
that ‘mirrors’ Axiom A in M, meaning that M satisfies A’ iff M[G] satisfies
A. We do this because M satisfies the axioms, so we have hypotheses to
prove things in M which we do not have in M[G].
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To make this work in M, we have to avoid the part that says ... for every
filter G C P which is P-generic over M, ...” since the P-generic filters G
need not be elements of M. We address that by finding a different relation IF*
such that

@ IF* is equivalent to I, and
@ |F* can be defined in any c.t.m. M.

This will be done by generalizing the usual complete Boolean algebra of truth
values ({0,1}; A, V,—,0, 1) for logic to a different complete Boolean algebra
RO(P) = (RO(P); A, V,—,0,1), and assigning truth values to formulas in
this Boolean algebra.
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Let X = (X;7) be a topological space. For each open set O € T, let O+ be
the union of open sets disjoint from O. O~ is then the largest open set in 7~
that is disjoint from O. Call O+ the regularization of O.

Exercises. Show

@ O — O+ is aclosure operator on X. (The closed elements are called
regular open sets.)

@ O isregulariff O = int(cl(O)).

@ The algebra RO(X) = (RO(X); A, V, —,0, 1) of regular open sets of
(X;T) is a complete Boolean algebra.

© When | X| = 1, RO(X) is the 2-element BA.
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We shall define a Boolean truth value [¢(0y, . ..,0m—1)] € RO(P) for each
formula ¢ and for o, ..., 01 € M P The relation

e(p) C [¢(oo, ... ,0m—1)] will be denoted p I-* ©(oy, . ..,0m—1). This
relation will mirror the forcing relation in M.
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Theorem. Let P = (P; <, 1) be a forcing order, and e(p) = (p]*+. There
exist two class functions V7 x V¥ — RO(P), denoted

(o,7) = o =17] and (o,7) = o €], )
such that the following hold for all o, 7 € V"

[o=71= A (elp) = [c€oDA A (elg) = [ner]), &
(&p)er (n.q)€c
[cerl= \ (elp)Afo=¢£]). €3]

(& p)er

These two functions have to be defined simultaneously by recursion. This may
be accomplished with a single function F: 2 x V' x V¥ — RO(P) defined
by recursion, and [x = y] means F(0, z, y) while [z € y]] means F(1, z,y).
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Q [¢(c0,.- . 0m-1) AY(00,...,0m-1)] = [&(00,--.,0m-1)] A [¥(o0,...,0m=1)]
Q [(Vx)é(oo,. .. ,0m-1,2)] := /\Tevp [é(o0,-. 0m=1,7)].
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