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(Proof may be found in NST, pages 606-609.)

The relations p IF o (7) and (p IF* (7)™




Two Lemmas about RO(P)

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A.

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i))

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof:

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(P) \ {(}.

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(P) \ {#}. Choose p € R.

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R,

The relations p IF o (7) and (p IF* (7)™



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(P) \ {(}}. Choose p € R. e(p) C R, since
regularization is a closure operator.

The relations p IF o (7) and (p IF* (7)™




Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}.

The relations p - ©(7) and (p IF* ¢ T))IU




Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since

regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

The relations p - ©(7) and (p IF* ¢ T))IU




Two Lemmas about RO(P)
Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B.

The relations p - ©(7) and (p IF* ¢ T))IU




Two Lemmas about RO(P)
Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently)

The relations p - ©(7) and (p IF* ¢ T))IU




Two Lemmas about RO(P)
Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P)

The relations p - ©(7) and (p IF* ¢ T))IU




Two Lemmas about RO(P)
Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.

The relations p - ©(7) and (p IF* ¢ T))IU




Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show U°Pen 0 VoPen — () implies U+ NV = 0.

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show U°Pen 0 VoPen — () implies U+ NV = 0.

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.
© Show that e(p) is open and p is compatible with every element of e(p).

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.
© Show that e(p) is open and p is compatible with every element of e(p).

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.
© Show that e(p) is open and p is compatible with every element of e(p).

© Show that if U is open and p is compatible with everything in U, then
U C e(p).

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.
© Show that e(p) is open and p is compatible with every element of e(p).

© Show that if U is open and p is compatible with everything in U, then
U C e(p).

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
regularization is a closure operator. Hence e¢(P)1 = RO(P) \ {0}. O

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (Vp € P) e(p) is
the largest open set U such p is compatible with every element of U.
Equivalently, e(p) = {r € P | p is compatible with every element of (r] }.

Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.
© Show that e(p) is open and p is compatible with every element of e(p).

© Show thatif U is open and p is compatible with everything in U, then
U Ce(p). Hint: U C (p].)

The relations p - ©(7) and (p IF* ¢ T))IU



Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in RO(P) \ {0}.

Proof: Choose R € RO(PP) \ {0}. Choose p € R. e(p) C R, since
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Proof:
@ Show UM N oPen — () implies U+ NV = (.
@ Show U NV = () implies UL N VL = 0.
© Show that e(p) is open and p is compatible with every element of e(p).

© Show thatif U is open and p is compatible with everything in U, then
U Ce(p). Hint: U C (p]) O
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Corollary. Let M be a c.t.m., let P € M be a forcing order, and let p € P.
For any formula ¢ with all free variables among vy, . . . , v;,—1 and for any
00,.-.,0m—1 € M, we have

pIF (@) = (pIF @)"

Proof of the Corollary from the Forcing Theorem:

(<=) Assume that (p I-* cp(ﬁ))M. For any generic G C P containing p, the
Forcing Theorem proves that M [G] = ¢(T¢). The definition of p IF ¢(7) is
satisfied.
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M

e(p) Z [p(@)]. so e(p) A [ (@)]" # 0.
(Dlscuss BAs here.)

@ There exists ¢ € P with e(q) C e(p) A [p(@)] (C e(p)).
(Use Lemma A here.)

@ e(q) C e(p) implies that p and ¢ are compatible.
(Use Lemma B here.)
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M

e(p) Z [p(@)]. so e(p) A [ (@)]" # 0.
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@ There exists ¢ € P with e(q) C e(p) A [p(@)] (C e(p)).
(Use Lemma A here.)

@ e(q) C e(p) implies that p and ¢ are compatible.
(Use Lemma B here.)

© There exists r € P withr < p, q.
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@ 3Geeeric C P containing 7.
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M
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@ There exists ¢ € P with e(q) C e(p) A [p(@)] (C e(p)).
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(Use Lemma B here.)
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@ 3Geeeric C P containing 7.
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M
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(Use Lemma A here.)

@ e(q) C e(p) implies that p and ¢ are compatible.
(Use Lemma B here.)

© There exists r € P withr < p, q.
N WM. _ _
@ (rlF —p(a))", since e(r) C e(q) € [¢(@)] = [~¢(@)]-
@ 3Geeeric C P containing 7.
(Discuss this here.)

@ By the Forcing Theorem, Item 5 and r € G imply M[G] | —¢(T¢).
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M
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@ There exists ¢ € P with e(q) C e(p) A [p(@)] (C e(p)).
(Use Lemma A here.)

@ e(q) C e(p) implies that p and ¢ are compatible.
(Use Lemma B here.)

© There exists r € P withr < p, q.
N WM. _ _
@ (rlF —p(a))", since e(r) C e(q) € [¢(@)] = [~¢(@)]-
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(Discuss this here.)
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The relations p - ©(7) and (p IF* ¢ T))IU



Eliminating GG from the Forcing Theorem, continued

(:> contradiction) Now assume that p |- (), but (p If* go(&))M

e(p) Z [p(@)]. so e(p) A [ (@)]" # 0.
(Dlscuss BAs here.)

@ There exists ¢ € P with e(q) C e(p) A [p(@)] (C e(p)).
(Use Lemma A here.)

@ e(q) C e(p) implies that p and ¢ are compatible.
(Use Lemma B here.)

© There exists r € P withr < p, q.
N WM. _ _
@ (rlF —p(a))", since e(r) C e(q) € [¢(@)] = [~¢(@)]-
@ 3Geeeric C P containing 7.
(Discuss this here.)

@ By the Forcing Theorem, Item 5 and r € G imply M[G] | —¢(T¢).
@ But M[G] E ¢(7q), since r < p,
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M
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@ There exists ¢ € P with e(q) C e(p) A [p(@)] (C e(p)).
(Use Lemma A here.)

@ e(q) C e(p) implies that p and ¢ are compatible.
(Use Lemma B here.)

© There exists r € P withr < p, q.
N WM. _ _
@ (rlF —p(a))", since e(r) C e(q) € [¢(@)] = [~¢(@)]-
@ 3Geeeric C P containing 7.
(Discuss this here.)

@ By the Forcing Theorem, Item 5 and r € G imply M[G] | —¢(T¢).
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(:> contradiction) Now assume that p |- (), but (p If* go(&))M

e(p) Z [p(@)]. so e(p) A [ (@)]" # 0.
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@ There exists ¢ € P with e(q) C e(p) A [p(@)] (C e(p)).
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@ By the Forcing Theorem, Item 5 and r € G imply M[G] | —¢(T¢).
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Next steps

© (Wednesday) Use the Forcing Theorem to explain why M [G] is a model.

© (Friday) Show that c.c.c. forcings preserve cardinals.
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