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Review

Let M be a c.t.m. of ZFC, and let P = ⟨P ; ≤, 1⟩ ∈ M be a forcing order. For
each formula φ(v0, . . . , vm−1) define

p ⊩P,M φ(τ0, . . . , τm−1):
for τi ∈ MP and for any generic filter G ⊆ P containing p,
φM [G](v0, . . . , vm−1) holds of τ0G, . . . , τm−1G.
(The relation ⊩ is what we care about.)

(p ⊩∗ φ(τ))M :
e(p) ⊆ [[φ(τ0, . . . , τm−1)]] in RO(P). Here:

1 RO(P) is the complete BA of regular open subsets of P,
2 [[φ(τ0, . . . , τm−1)]] was defined by recursion on the complexity of φ, and
3 e(p) is the regularization of the principal open set (p].

(The relation ⊩∗ is what we have access to.)
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Recall: The Forcing Theorem

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m., let P ∈ M be a
forcing order, and let G ⊆ P be a P-generic filter over M . For any formula φ
with all free variables among v0, . . . , vm−1 and for any σ0, . . . , σm−1 ∈ MP ,
the following conditions are equivalent:

1 φ(σ0G, . . . , σ(m−1)G) holds in M [G].
2 There is a p ∈ G such that

(
p ⊩∗ φ(σ0, . . . , σm−1)

)M .

(Proof may be found in NST, pages 606-609.)
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Two Lemmas about RO(P)

Lemma A. (NST, Theorem 27.2(i)) e(P ) is dense in RO(P) \ {∅}.

Proof: Choose R ∈ RO(P) \ {∅}. Choose p ∈ R. e(p) ⊆ R, since
regularization is a closure operator. Hence e(P)↑ = RO(P) \ {∅}. 2

Lemma B. (NST, Proposition 27.21(ii), phrased differently) (∀p ∈ P ) e(p) is
the largest open set U such p is compatible with every element of U .
Equivalently, e(p) = {r ∈ P | p is compatible with every element of (r] }.

Proof:

1 Show Uopen ∩ V open = ∅ implies U⊥⊥ ∩ V = ∅.
2 Show U ∩ V = ∅ implies U⊥⊥ ∩ V ⊥⊥ = ∅.
3 Show that e(p) is open and p is compatible with every element of e(p).
4 Show that if U is open and p is compatible with everything in U , then

U ⊆ e(p). (Hint: U ⊆ (p].) 2
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Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary.

Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m.,

let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order,

and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .

For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1

and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP ,

we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:

(⇐=) Assume that
(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=)

Assume that
(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M .

For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p,

the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG).

The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let P ∈ M be a forcing order, and let p ∈ P .
For any formula φ with all free variables among v0, . . . , vm−1 and for any
σ0, . . . , σm−1 ∈ MP , we have

p ⊩ φ(σ) ⇐⇒
(
p ⊩∗ φ(σ)

)M
.

Proof of the Corollary from the Forcing Theorem:
(⇐=) Assume that

(
p ⊩∗ φ(σ)

)M . For any generic G ⊆ P containing p, the
Forcing Theorem proves that M [G] |= φ(σG). The definition of p ⊩ φ(σ) is
satisfied.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 5 / 7



Eliminating G from the Forcing Theorem, continued

(=⇒, contradiction) Now assume that p ⊩ φ(σ), but
(
p ̸⊩∗ φ(σ)

)M .

1 e(p) ̸⊆ [[φ(σ)]], so e(p) ∧ [[φ(σ)]]′ ̸= ∅.
(Discuss BAs here.)

2 There exists q ∈ P with e(q) ⊆ e(p) ∧ [[φ(σ)]]′ (⊆ e(p)).
(Use Lemma A here.)

3 e(q) ⊆ e(p) implies that p and q are compatible.
(Use Lemma B here.)

4 There exists r ∈ P with r ≤ p, q.
5

(
r ⊩∗ ¬φ(σ)

)M , since e(r) ⊆ e(q) ⊆ [[φ(σ)]]′ = [[¬φ(σ)]].
6 ∃Ggeneric ⊆ P containing r.

(Discuss this here.)
7 By the Forcing Theorem, Item 5 and r ∈ G imply M [G] |= ¬φ(σG).
8 But M [G] |= φ(σG), since r ≤ p, p ∈ G.
9 Contradiction! 2
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Next steps

1 (Wednesday) Use the Forcing Theorem to explain why M [G] is a model.

2 (Friday) Show that c.c.c. forcings preserve cardinals.

The relations p ⊩ φ(τ) and (p ⊩∗ φ(τ))M 7 / 7
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