The relations $p \Vdash \varphi(\overline{\tau})$ and $(p \Vdash^* \varphi(\overline{\tau}))^M$

Let M be a c.t.m. of ZFC, and let $\mathbb{P}=\langle P;\leq,1\rangle\in M$ be a forcing order.

$$p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1})$$
:

$$p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1})$$
: for $\tau_i \in M^{\mathbb{P}}$

Let M be a c.t.m. of ZFC, and let $\mathbb{P}=\langle P;\leq,1\rangle\in M$ be a forcing order. For each formula $\varphi(v_0,\ldots,v_{m-1})$ define

 $p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1})$: for $\tau_i \in M^{\mathbb{P}}$ and for any generic filter $G \subseteq P$ containing p,

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}.
```

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.) (p \Vdash^* \varphi(\overline{\tau}))^M:
```

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq [\![\varphi(\tau_0, \dots, \tau_{m-1})]\!] \text{ in RO}(\mathbb{P}).$

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket \text{ in RO}(\mathbb{P}). \text{ Here:}$

Let M be a c.t.m. of ZFC, and let $\mathbb{P}=\langle P;\leq,1\rangle\in M$ be a forcing order. For each formula $\varphi(v_0,\ldots,v_{m-1})$ define

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket$ in RO(\mathbb{P}). Here:

 $\bullet \ \ RO(\mathbb{P}) \ is \ the \ complete \ BA \ of \ regular \ open \ subsets \ of \ \mathbb{P},$

Let M be a c.t.m. of ZFC, and let $\mathbb{P}=\langle P;\leq,1\rangle\in M$ be a forcing order. For each formula $\varphi(v_0,\ldots,v_{m-1})$ define

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket$ in RO(\mathbb{P}). Here:

 $\bullet \ \ RO(\mathbb{P}) \ is \ the \ complete \ BA \ of \ regular \ open \ subsets \ of \ \mathbb{P},$

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket$ in RO(\mathbb{P}). Here:

- **1** RO(\mathbb{P}) is the complete BA of regular open subsets of \mathbb{P} ,

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket$ in RO(\mathbb{P}). Here:

- **1** RO(\mathbb{P}) is the complete BA of regular open subsets of \mathbb{P} ,

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket$ in RO(\mathbb{P}). Here:

- **1** RO(\mathbb{P}) is the complete BA of regular open subsets of \mathbb{P} ,

```
p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}): for \tau_i \in M^{\mathbb{P}} and for any generic filter G \subseteq P containing p, \varphi^{M[G]}(v_0,\ldots,v_{m-1}) holds of \tau_{0G},\ldots,\tau_{m-1G}. (The relation \Vdash is what we care about.)
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket$ in RO(\mathbb{P}). Here:

- **1** RO(\mathbb{P}) is the complete BA of regular open subsets of \mathbb{P} ,

Let M be a c.t.m. of ZFC, and let $\mathbb{P}=\langle P;\leq,1\rangle\in M$ be a forcing order. For each formula $\varphi(v_0,\ldots,v_{m-1})$ define

```
\begin{array}{l} p \Vdash_{\mathbb{P},M} \varphi(\tau_0,\ldots,\tau_{m-1}) \text{:} \\ \text{for } \tau_i \in M^{\mathbb{P}} \text{ and for any generic filter } G \subseteq P \text{ containing } p, \\ \varphi^{M[G]}(v_0,\ldots,v_{m-1}) \text{ holds of } \tau_{0G},\ldots,\tau_{m-1G}. \\ \text{(The relation } \Vdash \text{ is what we care about.)} \end{array}
```

$$(p \Vdash^* \varphi(\overline{\tau}))^M$$
:
 $e(p) \subseteq \llbracket \varphi(\tau_0, \dots, \tau_{m-1}) \rrbracket$ in RO(\mathbb{P}). Here:

- **O** RO(\mathbb{P}) is the complete BA of regular open subsets of \mathbb{P} ,
- \bullet e(p) is the regularization of the principal open set (p].

(The relation \Vdash^* is what we have access to.)

Theorem.

Theorem. (NST, Theorem 28.20(i))

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m.,

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order,

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $G \subseteq P$ be a \mathbb{P} -generic filter over M.

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $G \subseteq P$ be a \mathbb{P} -generic filter over M. For any formula φ with all free variables among v_0, \ldots, v_{m-1}

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $G \subseteq P$ be a \mathbb{P} -generic filter over M. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, the following conditions are equivalent:

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $G \subseteq P$ be a \mathbb{P} -generic filter over M. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, the following conditions are equivalent:

- **1** There is a $p \in G$ such that $(p \Vdash^* \varphi(\sigma_0, \dots, \sigma_{m-1}))^M$.

- **1** There is a $p \in G$ such that $(p \Vdash^* \varphi(\sigma_0, \dots, \sigma_{m-1}))^M$.

- **1** There is a $p \in G$ such that $(p \Vdash^* \varphi(\sigma_0, \dots, \sigma_{m-1}))^M$.

Theorem. (NST, Theorem 28.20(i)) Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $G \subseteq P$ be a \mathbb{P} -generic filter over M. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, the following conditions are equivalent:

(Proof may be found in NST, pages 606-609.)

Two Lemmas about $RO(\mathbb{P})$

Two Lemmas about $RO(\mathbb{P})$

Lemma A.

Two Lemmas about $RO(\mathbb{P})$

Lemma A. (NST, Theorem 27.2(i))

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$,

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P)$

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

Proof:

• Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

Proof:

• Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.
- Show $U \cap V = \emptyset$ implies $U^{\perp \perp} \cap V^{\perp \perp} = \emptyset$.
- **3** Show that e(p) is open and p is compatible with every element of e(p).

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.
- Show $U \cap V = \emptyset$ implies $U^{\perp \perp} \cap V^{\perp \perp} = \emptyset$.
- **3** Show that e(p) is open and p is compatible with every element of e(p).

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.
- Show $U \cap V = \emptyset$ implies $U^{\perp \perp} \cap V^{\perp \perp} = \emptyset$.
- **3** Show that e(p) is open and p is compatible with every element of e(p).
- Show that if U is open and p is compatible with everything in U, then $U \subseteq e(p)$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. \square

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.
- Show $U \cap V = \emptyset$ implies $U^{\perp \perp} \cap V^{\perp \perp} = \emptyset$.
- lacksquare Show that e(p) is open and p is compatible with every element of e(p).
- Show that if U is open and p is compatible with everything in U, then $U \subseteq e(p)$.

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = \mathrm{RO}(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.
- Show $U \cap V = \emptyset$ implies $U^{\perp \perp} \cap V^{\perp \perp} = \emptyset$.
- lacksquare Show that e(p) is open and p is compatible with every element of e(p).
- Show that if U is open and p is compatible with everything in U, then $U \subseteq e(p)$. (Hint: $U \subseteq \overline{(p]}$.)

Lemma A. (NST, Theorem 27.2(i)) e(P) is dense in $RO(\mathbb{P}) \setminus \{\emptyset\}$.

Proof: Choose $R \in RO(\mathbb{P}) \setminus \{\emptyset\}$. Choose $p \in R$. $e(p) \subseteq R$, since regularization is a closure operator. Hence $e(\mathbb{P}) \uparrow = RO(\mathbb{P}) \setminus \{\emptyset\}$.

Lemma B. (NST, Proposition 27.21(ii), phrased differently) $(\forall p \in P) \ e(p)$ is the largest open set U such p is compatible with every element of U. Equivalently, $e(p) = \{r \in P \mid p \text{ is compatible with every element of } (r] \}.$

- Show $U^{\text{open}} \cap V^{\text{open}} = \emptyset$ implies $U^{\perp \perp} \cap V = \emptyset$.
- Show $U \cap V = \emptyset$ implies $U^{\perp \perp} \cap V^{\perp \perp} = \emptyset$.
- § Show that e(p) is open and p is compatible with every element of e(p).
- Show that if U is open and p is compatible with everything in U, then $U \subseteq e(p)$. (Hint: $U \subseteq \overline{(p]}$.) \square

Corollary.

Corollary. Let M be a c.t.m.,

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order,

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$.

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1}

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$,

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Proof of the Corollary from the Forcing Theorem:

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Proof of the Corollary from the Forcing Theorem: (\longleftarrow)

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Proof of the Corollary from the Forcing Theorem: (\Leftarrow) Assume that $(p \Vdash^* \varphi(\overline{\sigma}))^M$.

Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Proof of the Corollary from the Forcing Theorem: (\Leftarrow) Assume that $(p \Vdash^* \varphi(\overline{\sigma}))^M$. For any generic $G \subseteq P$ containing p,

Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Proof of the Corollary from the Forcing Theorem: (\Leftarrow) Assume that $(p \Vdash^* \varphi(\overline{\sigma}))^M$. For any generic $G \subseteq P$ containing p, the Forcing Theorem proves that $M[G] \models \varphi(\overline{\sigma}_G)$.

Eliminating G from the Forcing Theorem

Corollary. Let M be a c.t.m., let $\mathbb{P} \in M$ be a forcing order, and let $p \in P$. For any formula φ with all free variables among v_0, \ldots, v_{m-1} and for any $\sigma_0, \ldots, \sigma_{m-1} \in M^P$, we have

$$p \Vdash \varphi(\overline{\sigma}) \Longleftrightarrow (p \Vdash^* \varphi(\overline{\sigma}))^M.$$

Proof of the Corollary from the Forcing Theorem: (\Leftarrow) Assume that $(p \Vdash^* \varphi(\overline{\sigma}))^M$. For any generic $G \subseteq P$ containing p, the Forcing Theorem proves that $M[G] \models \varphi(\overline{\sigma}_G)$. The definition of $p \Vdash \varphi(\overline{\sigma})$ is satisfied.

 $(\Longrightarrow$, contradiction)

 $(\Longrightarrow, \text{ contradiction}) \text{ Now assume that } p \Vdash \varphi(\overline{\sigma}), \text{ but } \left(p \not\Vdash^* \varphi(\overline{\sigma})\right)^M.$

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

 $\bullet \ e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket, \text{ so } e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset.$

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

 $\bullet \ e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket, \text{ so } e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset.$

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

• $e(p) \nsubseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \land \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

- $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
- ② There exists $q \in P$ with $e(q) \subseteq e(p) \land \llbracket \varphi(\overline{\sigma}) \rrbracket'$

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

- $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
- ② There exists $q \in P$ with $e(q) \subseteq e(p) \land \llbracket \varphi(\overline{\sigma}) \rrbracket'$

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - \bullet $e(q) \subseteq e(p)$ implies that p and q are compatible.

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - \bullet $e(q) \subseteq e(p)$ implies that p and q are compatible.

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

- $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
- ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
- \bullet $e(q) \subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - **3** $e(q) \subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - **3** $e(q) \subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

- $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
- ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
- \bullet $e(q) \subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
- There exists $r \in P$ with $r \leq p, q$.

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

- $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
- ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
- \bullet $e(q) \subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
- There exists $r \in P$ with $r \leq p, q$.

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - \bullet $e(q) \subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **⑤** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **⑤** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **⑤** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **6** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - O By the Forcing Theorem,

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **6** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - By the Forcing Theorem,

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **⑤** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - **1** By the Forcing Theorem, Item 5 and $r \in G$ imply

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **⑤** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - **②** By the Forcing Theorem, Item 5 and $r \in G$ imply $M[G] \models \neg \varphi(\overline{\sigma}_G)$.

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **6** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - **②** By the Forcing Theorem, Item 5 and $r \in G$ imply $M[G] \models \neg \varphi(\overline{\sigma}_G)$.
 - $\bullet \quad \text{But } M[G] \models \varphi(\overline{\sigma}_G),$

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **6** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - **②** By the Forcing Theorem, Item 5 and $r \in G$ imply $M[G] \models \neg \varphi(\overline{\sigma}_G)$.
 - $\bullet \quad \text{But } M[G] \models \varphi(\overline{\sigma}_G),$

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **6** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - **②** By the Forcing Theorem, Item 5 and $r \in G$ imply $M[G] \models \neg \varphi(\overline{\sigma}_G)$.
 - 8 But $M[G] \models \varphi(\overline{\sigma}_G)$, since $r \leq p$,

- $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.
 - $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
 - ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
 - ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
 - There exists $r \in P$ with $r \leq p, q$.

 - **⑤** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
 - **②** By the Forcing Theorem, Item 5 and $r \in G$ imply $M[G] \models \neg \varphi(\overline{\sigma}_G)$.
 - 8 But $M[G] \models \varphi(\overline{\sigma}_G)$, since $r \leq p, p \in G$.

 $(\Longrightarrow, \text{ contradiction})$ Now assume that $p \Vdash \varphi(\overline{\sigma})$, but $(p \not\Vdash^* \varphi(\overline{\sigma}))^M$.

- $e(p) \not\subseteq \llbracket \varphi(\overline{\sigma}) \rrbracket$, so $e(p) \wedge \llbracket \varphi(\overline{\sigma}) \rrbracket' \neq \emptyset$. (Discuss BAs here.)
- ② There exists $q \in P$ with $e(q) \subseteq e(p) \wedge [\![\varphi(\overline{\sigma})]\!]' \subseteq e(p)$. (Use Lemma A here.)
- ullet $e(q)\subseteq e(p)$ implies that p and q are compatible. (Use Lemma B here.)
- There exists $r \in P$ with $r \leq p, q$.
- **6** $\exists G^{\text{generic}} \subseteq P \text{ containing } r.$ (Discuss this here.)
- **②** By the Forcing Theorem, Item 5 and $r \in G$ imply $M[G] \models \neg \varphi(\overline{\sigma}_G)$.
- 8 But $M[G] \models \varphi(\overline{\sigma}_G)$, since $r \leq p, p \in G$.
- Ontradiction!

• (Wednesday)

• (Wednesday)

(Wednesday) Use the Forcing Theorem to explain why M[G] is a model.

- Wednesday) Use the Forcing Theorem to explain why M[G] is a model.
- (Friday)

- Wednesday) Use the Forcing Theorem to explain why M[G] is a model.
- (Friday)

- $\textcircled{ Wednesday)} \ \text{Use the Forcing Theorem to explain why} \ M[G] \ \text{is a model}.$
- (Friday) Show that c.c.c. forcings preserve cardinals.