The Δ -System Lemma

Let $\Gamma = \langle V; E \rangle$ be a simple graph.

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ)

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent,

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent, or a matching,

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent, or a matching, if no two elements of E' share a common vertex.

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent, or a matching, if no two elements of E' share a common vertex.

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent, or a matching, if no two elements of E' share a common vertex.

Question.

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent, or a matching, if no two elements of E' share a common vertex.

Question. Let κ be an infinite cardinal.

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent, or a matching, if no two elements of E' share a common vertex.

Question. Let κ be an infinite cardinal. If $\Gamma = \langle V, E \rangle$ is a simple graph with $|E| = \kappa$, must Γ have a matching $E' \subseteq E$ of size κ ?

Let $\Gamma = \langle V; E \rangle$ be a simple graph. For this presentation, this means that V is a set (called the set of **vertices** of Γ) and E is a set of 2-element subsets of V (called the **edges** of Γ).

Call a subset $E' \subseteq E$ independent, or a matching, if no two elements of E' share a common vertex.

Question. Let κ be an infinite cardinal. If $\Gamma = \langle V, E \rangle$ is a simple graph with $|E| = \kappa$, must Γ have a matching $E' \subseteq E$ of size κ ?

Comments.

① If a graph is a cone with κ -many edges,

Comments.

① If a graph is a cone with κ -many edges,

Comments.

• If a graph is a cone with κ -many edges, then it has no matching with more than one edge.

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges,

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges,

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges, then no subgraph can be a cone of more than one edge.

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges, then no subgraph can be a cone of more than one edge.
- We will see that,

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges, then no subgraph can be a cone of more than one edge.
- We will see that,

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges, then no subgraph can be a cone of more than one edge.
- **1** We will see that, if κ is an uncountable regular cardinal,

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges, then no subgraph can be a cone of more than one edge.
- **③** We will see that, if κ is an uncountable regular cardinal, then any graph with κ -many edges must contain a matching with κ -many edges,

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges, then no subgraph can be a cone of more than one edge.
- **3** We will see that, if κ is an uncountable regular cardinal, then any graph with κ -many edges must contain a matching with κ -many edges, or a cone subgraph with κ -many edges.

- If a graph is a cone with κ -many edges, then it has no matching with more than one edge.
- ② If the edges of a graph form a matching with κ -many edges, then no subgraph can be a cone of more than one edge.
- **3** We will see that, if κ is an uncountable regular cardinal, then any graph with κ -many edges must contain a matching with κ -many edges, or a cone subgraph with κ -many edges.

Definition.

Definition. A hypergraph is a pair $\Upsilon = \langle V; H \rangle$ where V is a set

Definition. A hypergraph is a pair $\Upsilon = \langle V; H \rangle$ where V is a set (called the set of vertices)

Definition. A hypergraph is a pair $\Upsilon = \langle V; H \rangle$ where V is a set (called the set of vertices) and H is a set of nonempty subsets of V

Definition. A hypergraph is a pair $\Upsilon = \langle V; H \rangle$ where V is a set (called the set of vertices) and H is a set of nonempty subsets of V (called the hyperedges).

Definition. A **hypergraph** is a pair $\Upsilon = \langle V; H \rangle$ where V is a set (called the set of **vertices**) and H is a set of nonempty subsets of V (called the **hyperedges**). $\Upsilon = \langle V; H \rangle$ is a **finitary hypergraph** if all hyperedges are finite.

Definition. A **hypergraph** is a pair $\Upsilon = \langle V; H \rangle$ where V is a set (called the set of **vertices**) and H is a set of nonempty subsets of V (called the **hyperedges**). $\Upsilon = \langle V; H \rangle$ is a **finitary hypergraph** if all hyperedges are finite.

A simple graph is a finitary hypergraph where all edges have size 2.

Definition. A **hypergraph** is a pair $\Upsilon = \langle V; H \rangle$ where V is a set (called the set of **vertices**) and H is a set of nonempty subsets of V (called the **hyperedges**). $\Upsilon = \langle V; H \rangle$ is a **finitary hypergraph** if all hyperedges are finite.

A simple graph is a finitary hypergraph where all edges have size 2.

Definition.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system),

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that,

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$,

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

1 A matching in Γ is a Δ -system with a 0-element root.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

1 A matching in Γ is a Δ -system with a 0-element root.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

- **1** A matching in Γ is a Δ -system with a 0-element root.
- **2** A cone in Γ is a Δ -system with a 1-element root.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

- **1** A matching in Γ is a Δ -system with a 0-element root.
- **2** A cone in Γ is a Δ -system with a 1-element root.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

- **1** A matching in Γ is a Δ -system with a 0-element root.
- **2** A cone in Γ is a Δ -system with a 1-element root.

Thus, the concept of a Δ -system generalizes to finitary hypergraphs the concepts of matchings and cones from ordinary graph theory.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

- **1** A matching in Γ is a Δ -system with a 0-element root.
- **2** A cone in Γ is a Δ -system with a 1-element root.

Thus, the concept of a Δ -system generalizes to finitary hypergraphs the concepts of matchings and cones from ordinary graph theory. This concept was introduced and named in 1960 by Erdős and Rado.

Definition. Let $\Upsilon = \langle V; H \rangle$ be a finitary hypergraph. A Δ -System in Υ is a subset $H' \subseteq H$ for which there exists a subset $r \subseteq V$ (called the **root** or **kernel** of the Δ -system), such that, for every $e, f \in H'$ with $e \neq f$, it is the case that $e \cap f = r$. (This states that any pair of distinct hyperedges have the same intersection.)

Remarks. Let $\Gamma = \langle V; E \rangle$ be a simple graph.

- **1** A matching in Γ is a Δ -system with a 0-element root.
- **2** A cone in Γ is a Δ -system with a 1-element root.

Thus, the concept of a Δ -system generalizes to finitary hypergraphs the concepts of matchings and cones from ordinary graph theory. This concept was introduced and named in 1960 by Erdős and Rado.

Theorem.

Theorem. Let κ be an uncountable regular cardinal.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$,

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof:

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m > 0 such that every hyperedge has size m.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m = 1)$$

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m=1)$$

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

(m=1) \checkmark

(Inductive step)

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m=1)$$

(Inductive step) Assume the statement is true for some m > 1, prove it for m + 1.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m=1)$$

(Inductive step) Assume the statement is true for some m>1, prove it for m+1. Let $\Upsilon=\langle V;H\rangle$ be a finitary hypergraph with $|H|=\kappa$ where every hyperedge has size m+1.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m=1)$$

(Inductive step) Assume the statement is true for some m>1, prove it for m+1. Let $\Upsilon=\langle V;H\rangle$ be a finitary hypergraph with $|H|=\kappa$ where every hyperedge has size m+1.

Case 1.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

(m=1)

(Inductive step) Assume the statement is true for some m>1, prove it for m+1. Let $\Upsilon=\langle V;H\rangle$ be a finitary hypergraph with $|H|=\kappa$ where every hyperedge has size m+1.

Case 1. There exists $v \in V$ such that the set H_v of hyperedges from H that contain v has cardinality $|H_v| = \kappa$.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m=1)$$

(Inductive step) Assume the statement is true for some m>1, prove it for m+1. Let $\Upsilon=\langle V;H\rangle$ be a finitary hypergraph with $|H|=\kappa$ where every hyperedge has size m+1.

Case 1. There exists $v \in V$ such that the set H_v of hyperedges from H that contain v has cardinality $|H_v| = \kappa$.

In this case, apply IH to the hypergraph $\Upsilon' = \langle V; \overline{H} \rangle$ where $\overline{H} = \{e - \{v\} \mid e \in H_v\} \rangle$ to get a Δ -system $\overline{H}' \subseteq \overline{H}$ of size κ with root r.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m=1)$$

(Inductive step) Assume the statement is true for some m>1, prove it for m+1. Let $\Upsilon=\langle V;H\rangle$ be a finitary hypergraph with $|H|=\kappa$ where every hyperedge has size m+1.

Case 1. There exists $v \in V$ such that the set H_v of hyperedges from H that contain v has cardinality $|H_v| = \kappa$.

In this case, apply IH to the hypergraph $\Upsilon' = \langle V; \overline{H} \rangle$ where $\overline{H} = \{e - \{v\} \mid e \in H_v\} \rangle$ to get a Δ -system $\overline{H}' \subseteq \overline{H}$ of size κ with root r. Add v back to all hyperedges in \overline{H}' to get a Δ -system $H' \subseteq H_v \subseteq H$ of the same size with root $r \cup \{v\}$.

Theorem. Let κ be an uncountable regular cardinal. If $\Upsilon = \langle V; H \rangle$ is a finitary hypergraph with $|H| = \kappa$, then there is a Δ -system $H' \subseteq H$ of size $|H'| = \kappa$.

Proof: WLOG there exists m>0 such that every hyperedge has size m. Proceed by induction on m:

$$(m=1)$$

(Inductive step) Assume the statement is true for some m>1, prove it for m+1. Let $\Upsilon=\langle V;H\rangle$ be a finitary hypergraph with $|H|=\kappa$ where every hyperedge has size m+1.

Case 1. There exists $v \in V$ such that the set H_v of hyperedges from H that contain v has cardinality $|H_v| = \kappa$.

In this case, apply IH to the hypergraph $\Upsilon' = \langle V; \overline{H} \rangle$ where $\overline{H} = \{e - \{v\} \mid e \in H_v\} \rangle$ to get a Δ -system $\overline{H}' \subseteq \overline{H}$ of size κ with root r. Add v back to all hyperedges in \overline{H}' to get a Δ -system $H' \subseteq H_v \subseteq H$ of the same size with root $r \cup \{v\}$.

Case 2.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha < \kappa}$.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha < \kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i < \kappa}$ of κ -many, pairwise-disjoint hyperedges.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0} = e_0$.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ).

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X = \bigcup_{\gamma < \beta} e_{\alpha_{\gamma}}$ is a union of $|\beta|$ -many finite sets.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X=\bigcup_{\gamma<\beta}e_{\alpha_\gamma}$ is a union of $|\beta|$ -many finite sets. Since $\beta<\kappa$, $|X|<\kappa$.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X=\bigcup_{\gamma<\beta}e_{\alpha_\gamma}$ is a union of $|\beta|$ -many finite sets. Since $\beta<\kappa$, $|X|<\kappa$. Now let Y be the set of hyperedges that contain some element of X.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X = \bigcup_{\gamma < \beta} e_{\alpha_{\gamma}}$ is a union of $|\beta|$ -many finite sets. Since $\beta < \kappa$, $|X| < \kappa$. Now let Y be the set of hyperedges that contain some element of X. $\bigcup Y$ is a set of $(<\kappa)$ -many sets of size $<\kappa$, hence $|\bigcup Y| < \kappa$.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X = \bigcup_{\gamma < \beta} e_{\alpha_{\gamma}}$ is a union of $|\beta|$ -many finite sets. Since $\beta < \kappa$, $|X| < \kappa$. Now let Y be the set of hyperedges that contain some element of X. $\bigcup Y$ is a set of $(< \kappa)$ -many sets of size $< \kappa$, hence $|\bigcup Y| < \kappa$. Since $\bigcup H = \kappa$, $H - Y \neq \emptyset$.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X=\bigcup_{\gamma<\beta}e_{\alpha_\gamma}$ is a union of $|\beta|$ -many finite sets. Since $\beta<\kappa$, $|X|<\kappa$. Now let Y be the set of hyperedges that contain some element of X. $\bigcup Y$ is a set of $(<\kappa)$ -many sets of size $<\kappa$, hence $|\bigcup Y|<\kappa$. Since $\bigcup H=\kappa, H-Y\neq\emptyset$. Any $e\in H-Y$ is disjoint from all hyperedges in X, hence we may choose $e_{\alpha_\beta}\in H-Y$ arbitrarily.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X=\bigcup_{\gamma<\beta}e_{\alpha_\gamma}$ is a union of $|\beta|$ -many finite sets. Since $\beta<\kappa$, $|X|<\kappa$. Now let Y be the set of hyperedges that contain some element of X. $\bigcup Y$ is a set of $(<\kappa)$ -many sets of size $<\kappa$, hence $|\bigcup Y|<\kappa$. Since $\bigcup H=\kappa, H-Y\neq\emptyset$. Any $e\in H-Y$ is disjoint from all hyperedges in X, hence we may choose $e_{\alpha_\beta}\in H-Y$ arbitrarily. In this way, we create a κ -sequence $(e_{\alpha_i})_{i<\kappa}$ of pairwise disjoint hyperedges.

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X=\bigcup_{\gamma<\beta}e_{\alpha_\gamma}$ is a union of $|\beta|$ -many finite sets. Since $\beta<\kappa$, $|X|<\kappa$. Now let Y be the set of hyperedges that contain some element of X. $\bigcup Y$ is a set of $(<\kappa)$ -many sets of size $<\kappa$, hence $|\bigcup Y|<\kappa$. Since $\bigcup H=\kappa, H-Y\neq\emptyset$. Any $e\in H-Y$ is disjoint from all hyperedges in X, hence we may choose $e_{\alpha_\beta}\in H-Y$ arbitrarily. In this way, we create a κ -sequence $(e_{\alpha_i})_{i<\kappa}$ of pairwise disjoint hyperedges. The set of terms in the sequence is a Δ -system of size κ in Υ .

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X=\bigcup_{\gamma<\beta}e_{\alpha_\gamma}$ is a union of $|\beta|$ -many finite sets. Since $\beta<\kappa$, $|X|<\kappa$. Now let Y be the set of hyperedges that contain some element of X. $\bigcup Y$ is a set of $(<\kappa)$ -many sets of size $<\kappa$, hence $|\bigcup Y|<\kappa$. Since $\bigcup H=\kappa, H-Y\neq\emptyset$. Any $e\in H-Y$ is disjoint from all hyperedges in X, hence we may choose $e_{\alpha_\beta}\in H-Y$ arbitrarily. In this way, we create a κ -sequence $(e_{\alpha_i})_{i<\kappa}$ of pairwise disjoint hyperedges. The set of terms in the sequence is a Δ -system of size κ in Υ . \Box

Case 2. For every $v \in V$, the set H_v of edges from H that contain v has cardinality $|H_v| < \kappa$.

Enumerate the hyperedges of Υ : $(e_{\alpha})_{\alpha<\kappa}$. We are going to choose from this sequence a subsequence $(e_{\alpha_i})_{i<\kappa}$ of κ -many, pairwise-disjoint hyperedges. These will comprise a Δ -system with empty root.

Choose $e_{\alpha_0}=e_0$. Now suppose that we have defined all e_{α_γ} for $\gamma<\beta$ (< κ). We explain how to define e_{α_β} .

The set $X=\bigcup_{\gamma<\beta}e_{\alpha_\gamma}$ is a union of $|\beta|$ -many finite sets. Since $\beta<\kappa$, $|X|<\kappa$. Now let Y be the set of hyperedges that contain some element of X. $\bigcup Y$ is a set of $(<\kappa)$ -many sets of size $<\kappa$, hence $|\bigcup Y|<\kappa$. Since $\bigcup H=\kappa, H-Y\neq\emptyset$. Any $e\in H-Y$ is disjoint from all hyperedges in X, hence we may choose $e_{\alpha_\beta}\in H-Y$ arbitrarily. In this way, we create a κ -sequence $(e_{\alpha_i})_{i<\kappa}$ of pairwise disjoint hyperedges. The set of terms in the sequence is a Δ -system of size κ in Υ . \Box

Corollary 1.

Corollary 1. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges,

Corollary 1. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges, then either Γ has a matching of size κ or Γ has a cone subgraph with κ -many edges.

Corollary 1. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges, then either Γ has a matching of size κ or Γ has a cone subgraph with κ -many edges.

Corollary 2.

Corollary 1. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges, then either Γ has a matching of size κ or Γ has a cone subgraph with κ -many edges.

Corollary 2. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges and no vertex of degree κ ,

Corollary 1. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges, then either Γ has a matching of size κ or Γ has a cone subgraph with κ -many edges.

Corollary 2. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges and no vertex of degree κ , then Γ has a matching of size κ .

Corollary 1. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges, then either Γ has a matching of size κ or Γ has a cone subgraph with κ -many edges.

Corollary 2. Let κ be an uncountable regular cardinal. If $\Gamma = \langle V; E \rangle$ is a simple graph with κ -many edges and no vertex of degree κ , then Γ has a matching of size κ .

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal.

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa=\omega$

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$:

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω .

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

Counterexample when $\kappa > \omega$ is singular:

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

Counterexample when $\kappa > \omega$ is singular: Choose an increasing $cf(\kappa)$ -sequence of infinite ordinals $(\lambda_i) \nearrow \kappa$.

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

Counterexample when $\kappa > \omega$ is singular: Choose an increasing $cf(\kappa)$ -sequence of infinite ordinals $(\lambda_i) \nearrow \kappa$. Let $V = \kappa$.

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

Counterexample when $\kappa > \omega$ is singular: Choose an increasing $\mathrm{cf}(\kappa)$ -sequence of infinite ordinals $(\lambda_i) \nearrow \kappa$. Let $V = \kappa$. Let H consist of all 2-element sets of the form $\{\lambda_i, \alpha\}$ where α is an ordinal satisfying $\lambda_i < \alpha < \lambda_{i+1}$.

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

Counterexample when $\kappa > \omega$ is singular: Choose an increasing $\mathrm{cf}(\kappa)$ -sequence of infinite ordinals $(\lambda_i) \nearrow \kappa$. Let $V = \kappa$. Let H consist of all 2-element sets of the form $\{\lambda_i,\alpha\}$ where α is an ordinal satisfying $\lambda_i < \alpha < \lambda_{i+1}$. In this example, $|H| = \kappa$, but H contains no Δ -system of size κ .

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

Counterexample when $\kappa > \omega$ is singular: Choose an increasing $\mathrm{cf}(\kappa)$ -sequence of infinite ordinals $(\lambda_i) \nearrow \kappa$. Let $V = \kappa$. Let H consist of all 2-element sets of the form $\{\lambda_i, \alpha\}$ where α is an ordinal satisfying $\lambda_i < \alpha < \lambda_{i+1}$. In this example, $|H| = \kappa$, but H contains no Δ -system of size κ . (Any Δ -system has size at most λ_i for some i.)

The Δ -System Lemma was proved in the case where κ was an uncountable regular cardinal. The lemma fails for $\kappa = \omega$ and for uncountable singular cardinals.

Counterexample when $\kappa = \omega$: Let $V = \omega$ and let H be the set of finite, nonempty, initial segments of ω . $(H = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, \ldots\})$ In this example, H is countably infinite, but H contains no Δ -system of size > 2.

Counterexample when $\kappa > \omega$ is singular: Choose an increasing $\mathrm{cf}(\kappa)$ -sequence of infinite ordinals $(\lambda_i) \nearrow \kappa$. Let $V = \kappa$. Let H consist of all 2-element sets of the form $\{\lambda_i, \alpha\}$ where α is an ordinal satisfying $\lambda_i < \alpha < \lambda_{i+1}$. In this example, $|H| = \kappa$, but H contains no Δ -system of size κ . (Any Δ -system has size at most λ_i for some i.)

Here we explain why Cohen's forcing poset $\mathbb{P} = \langle F(\kappa \times \omega, 2, \omega); \supseteq, \emptyset \rangle$ does not have an uncountable subset consisting of pairwise incompatible elements.

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction:

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} .

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$.

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address.

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address. Consider each $p\in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V=\kappa\times\omega\times 2$.

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address. Consider each $p\in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V=\kappa\times\omega\times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V;A\rangle$ to obtain a Δ -system $A'\subseteq A$ of size ω_1 .

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address. Consider each $p\in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V=\kappa\times\omega\times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V;A\rangle$ to obtain a Δ -system $A'\subseteq A$ of size ω_1 . But,

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address. Consider each $p\in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V=\kappa\times\omega\times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V;A\rangle$ to obtain a Δ -system $A'\subseteq A$ of size ω_1 . But, no Δ -system contains even two incompatible elements of \mathbb{P}

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address. Consider each $p\in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V=\kappa\times\omega\times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V;A\rangle$ to obtain a Δ -system $A'\subseteq A$ of size ω_1 . But, no Δ -system contains even two incompatible elements of \mathbb{P} (Check!),

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address. Consider each $p\in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V=\kappa\times\omega\times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V;A\rangle$ to obtain a Δ -system $A'\subseteq A$ of size ω_1 . But, no Δ -system contains even two incompatible elements of \mathbb{P} (Check!), so we cannot have a Δ -system A' with ω_1 -many pairwise incompatible elements.

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A|=\omega_1$. Each $p\in A$ may be expressed as a finite set of triples of the form (α,n,i) where (α,n) is the address of a cell in a $\kappa\times\omega$ table and $i\in\{0,1\}$ is the entry in the table at this address. Consider each $p\in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V=\kappa\times\omega\times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V;A\rangle$ to obtain a Δ -system $A'\subseteq A$ of size ω_1 . But, no Δ -system contains even two incompatible elements of \mathbb{P} (Check!), so we cannot have a Δ -system A' with ω_1 -many pairwise incompatible elements. Contradiction!

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A| = \omega_1$. Each $p \in A$ may be expressed as a finite set of triples of the form (α, n, i) where (α, n) is the address of a cell in a $\kappa \times \omega$ table and $i \in \{0, 1\}$ is the entry in the table at this address. Consider each $p \in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V = \kappa \times \omega \times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V; A \rangle$ to obtain a Δ -system $A' \subseteq A$ of size ω_1 . But, no Δ -system contains even two incompatible elements of \mathbb{P} (Check!), so we cannot have a Δ -system A' with ω_1 -many pairwise incompatible elements. Contradiction! \square

Here we explain why Cohen's forcing poset $\mathbb{P}=\langle F(\kappa\times\omega,2,\omega);\supseteq,\emptyset\rangle$ does not have an uncountable subset consisting of pairwise incompatible elements. (\mathbb{P} satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in \mathbb{P} . WLOG $|A| = \omega_1$. Each $p \in A$ may be expressed as a finite set of triples of the form (α, n, i) where (α, n) is the address of a cell in a $\kappa \times \omega$ table and $i \in \{0, 1\}$ is the entry in the table at this address. Consider each $p \in A$ to be a hyperedge of a finitary hypergraph whose vertex set is $V = \kappa \times \omega \times 2$. We apply the Δ -System Lemma to the finitary hypergraph $\langle V; A \rangle$ to obtain a Δ -system $A' \subseteq A$ of size ω_1 . But, no Δ -system contains even two incompatible elements of \mathbb{P} (Check!), so we cannot have a Δ -system A' with ω_1 -many pairwise incompatible elements. Contradiction! \square

The concept of a cardinal is not absolute,

The concept of a cardinal is not absolute, and consequently we may experience 'cardinal collapse' when forcing.

The concept of a cardinal is not absolute, and consequently we may experience 'cardinal collapse' when forcing. We will see that cardinals are preserved when forcing over a c.c.c. poset.

The concept of a cardinal is not absolute, and consequently we may experience 'cardinal collapse' when forcing. We will see that cardinals are preserved when forcing over a c.c.c. poset.