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Context

Let Γ = ⟨V ; E⟩ be a simple graph. For this presentation, this means that V is
a set (called the set of vertices of Γ) and E is a set of 2-element subsets of V
(called the edges of Γ).

· · ·

Call a subset E′ ⊆ E independent, or a matching, if no two elements of E′

share a common vertex.

· · ·

Question. Let κ be an infinite cardinal. If Γ = ⟨V, E⟩ is a simple graph with
|E| = κ, must Γ have a matching E′ ⊆ E of size κ?
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Counterexample: a cone with universal vertex of degree κ

or

Comments.

1 If a graph is a cone with κ-many edges, then it has no matching with
more than one edge.

2 If the edges of a graph form a matching with κ-many edges, then no
subgraph can be a cone of more than one edge.

3 We will see that, if κ is an uncountable regular cardinal, then any graph
with κ-many edges must contain a matching with κ-many edges, or a
cone subgraph with κ-many edges.
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Finitary Hypergraphs

Definition. A hypergraph is a pair Υ = ⟨V ; H⟩ where V is a set (called the
set of vertices) and H is a set of nonempty subsets of V (called the
hyperedges). Υ = ⟨V ; H⟩ is a finitary hypergraph if all hyperedges are
finite.

A simple graph is a finitary hypergraph where all edges have size 2.
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∆-Systems

Definition. Let Υ = ⟨V ; H⟩ be a finitary hypergraph. A ∆-System in Υ is a
subset H ′ ⊆ H for which there exists a subset r ⊆ V (called the root or
kernel of the ∆-system), such that, for every e, f ∈ H ′ with e ̸= f , it is the
case that e ∩ f = r. (This states that any pair of distinct hyperedges have the
same intersection.)

Remarks. Let Γ = ⟨V ; E⟩ be a simple graph.

1 A matching in Γ is a ∆-system with a 0-element root.
2 A cone in Γ is a ∆-system with a 1-element root.

Thus, the concept of a ∆-system generalizes to finitary hypergraphs the
concepts of matchings and cones from ordinary graph theory. This concept
was introduced and named in 1960 by Erdős and Rado.
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The ∆-System Lemma 5 / 11



∆-Systems

Definition. Let Υ = ⟨V ; H⟩ be a finitary hypergraph. A ∆-System in Υ is a
subset H ′ ⊆ H for which there exists a subset r ⊆ V (called the root or
kernel of the ∆-system), such that,

for every e, f ∈ H ′ with e ̸= f , it is the
case that e ∩ f = r. (This states that any pair of distinct hyperedges have the
same intersection.)

Remarks. Let Γ = ⟨V ; E⟩ be a simple graph.

1 A matching in Γ is a ∆-system with a 0-element root.
2 A cone in Γ is a ∆-system with a 1-element root.

Thus, the concept of a ∆-system generalizes to finitary hypergraphs the
concepts of matchings and cones from ordinary graph theory. This concept
was introduced and named in 1960 by Erdős and Rado.
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The ∆-System Lemma 5 / 11



∆-Systems

Definition. Let Υ = ⟨V ; H⟩ be a finitary hypergraph. A ∆-System in Υ is a
subset H ′ ⊆ H for which there exists a subset r ⊆ V (called the root or
kernel of the ∆-system), such that, for every e, f ∈ H ′ with e ̸= f , it is the
case that e ∩ f = r. (This states that any pair of distinct hyperedges have the
same intersection.)

Remarks. Let Γ = ⟨V ; E⟩ be a simple graph.
1 A matching in Γ is a ∆-system with a 0-element root.
2 A cone in Γ is a ∆-system with a 1-element root.

Thus, the concept of a ∆-system generalizes to finitary hypergraphs the
concepts of matchings and cones from ordinary graph theory.

This concept
was introduced and named in 1960 by Erdős and Rado.
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The ∆-System Lemma

Theorem. Let κ be an uncountable regular cardinal. If Υ = ⟨V ; H⟩ is a finitary
hypergraph with |H| = κ, then there is a ∆-system H ′ ⊆ H of size |H ′| = κ.

Proof: WLOG there exists m > 0 such that every hyperedge has size m. Proceed by
induction on m:
(m = 1) ✓
(Inductive step) Assume the statement is true for some m > 1, prove it for m + 1.
Let Υ = ⟨V ; H⟩ be a finitary hypergraph with |H| = κ where every hyperedge has
size m + 1.

Case 1. There exists v ∈ V such that the set Hv of hyperedges from H that contain v
has cardinality |Hv| = κ.

In this case, apply IH to the hypergraph Υ′ = ⟨V ; H⟩ where
H = {e − {v} | e ∈ Hv}⟩ to get a ∆-system H

′ ⊆ H of size κ with root r. Add v

back to all hyperedges in H
′

to get a ∆-system H ′ ⊆ Hv ⊆ H of the same size with
root r ∪ {v}.
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More Proof

Case 2. For every v ∈ V , the set Hv of edges from H that contain v has
cardinality |Hv| < κ.

Enumerate the hyperedges of Υ: (eα)α<κ. We are going to choose from this
sequence a subsequence (eαi)i<κ of κ-many, pairwise-disjoint hyperedges.
These will comprise a ∆-system with empty root.

Choose eα0 = e0. Now suppose that we have defined all eαγ for γ < β (< κ).
We explain how to define eαβ

.
The set X =

⋃
γ<β eαγ is a union of |β|-many finite sets. Since β < κ,

|X| < κ. Now let Y be the set of hyperedges that contain some element of X .⋃
Y is a set of (< κ)-many sets of size < κ, hence |

⋃
Y | < κ. Since⋃

H = κ, H − Y ̸= ∅. Any e ∈ H − Y is disjoint from all hyperedges in X ,
hence we may choose eαβ

∈ H − Y arbitrarily. In this way, we create a
κ-sequence (eαi)i<κ of pairwise disjoint hyperedges.The set of terms in the
sequence is a ∆-system of size κ in Υ. 2
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Corollaries

Corollary 1. Let κ be an uncountable regular cardinal. If Γ = ⟨V ; E⟩ is a
simple graph with κ-many edges, then either Γ has a matching of size κ or Γ
has a cone subgraph with κ-many edges.

Corollary 2. Let κ be an uncountable regular cardinal. If Γ = ⟨V ; E⟩ is a
simple graph with κ-many edges and no vertex of degree κ, then Γ has a
matching of size κ.
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Counterexamples to Generalizations

The ∆-System Lemma was proved in the case where κ was an uncountable
regular cardinal. The lemma fails for κ = ω and for uncountable singular
cardinals.

Counterexample when κ = ω: Let V = ω and let H be the set of finite,
nonempty, initial segments of ω. (H = {{0}, {0, 1}, {0, 1, 2}, . . .}) In this
example, H is countably infinite, but H contains no ∆-system of size > 2.

Counterexample when κ > ω is singular: Choose an increasing
cf(κ)-sequence of infinite ordinals (λi) ↗ κ. Let V = κ. Let H consist of all
2-element sets of the form {λi, α} where α is an ordinal satisfying
λi < α < λi+1. In this example, |H| = κ, but H contains no ∆-system of
size κ. (Any ∆-system has size at most λi for some i.)
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An Application to Forcing

Here we explain why Cohen’s forcing poset P = ⟨F (κ × ω, 2, ω); ⊇, ∅⟩ does
not have an uncountable subset consisting of pairwise incompatible elements.
(P satisfies the countable chain condition.)

Proof by Contradiction: Assume that A is an uncountable strong antichain in
P. WLOG |A| = ω1. Each p ∈ A may be expressed as a finite set of triples of
the form (α, n, i) where (α, n) is the address of a cell in a κ × ω table and
i ∈ {0, 1} is the entry in the table at this address. Consider each p ∈ A to be a
hyperedge of a finitary hypergraph whose vertex set is V = κ × ω × 2. We
apply the ∆-System Lemma to the finitary hypergraph ⟨V ; A⟩ to obtain a
∆-system A′ ⊆ A of size ω1. But, no ∆-system contains even two
incompatible elements of P (Check!), so we cannot have a ∆-system A′ with
ω1-many pairwise incompatible elements. Contradiction! 2
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Looking forward

The concept of a cardinal is not absolute, and consequently we may
experience ‘cardinal collapse’ when forcing. We will see that cardinals are
preserved when forcing over a c.c.c. poset.
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