Verifying the Axiom of Comprehension

Theorem.

Theorem. Let V be a model of ZF.

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

transitive,

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

transitive,

- transitive,
- almost universal, and

- transitive,
- almost universal, and

- transitive,
- almost universal, and
- s closed under the Gödel operations,

- transitive,
- almost universal, and
- s closed under the Gödel operations,

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- Oclosed under the Gödel operations,

then M is a model of ZF.

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- Oclosed under the Gödel operations,

then M is a model of ZF.

The only part left to prove is that, if the hypotheses hold, then ${\cal M}$ satisfies the Axiom of Comprehension.

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- 3 closed under the Gödel operations,

then M is a model of ZF.

The only part left to prove is that, if the hypotheses hold, then M satisfies the Axiom of Comprehension. Informally, for any set X and any formula $\varphi(x,\bar{p})$ with parameters \bar{p} we have that $Y=\{u\in X\mid \varphi(u,\bar{p})\}$ is a set.

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- 3 closed under the Gödel operations,

then M is a model of ZF.

The only part left to prove is that, if the hypotheses hold, then M satisfies the Axiom of Comprehension. Informally, for any set X and any formula $\varphi(x,\bar{p})$ with parameters \bar{p} we have that $Y=\{u\in X\mid \varphi(u,\bar{p})\}$ is a set. Formally,

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- 3 closed under the Gödel operations,

then M is a model of ZF.

The only part left to prove is that, if the hypotheses hold, then M satisfies the Axiom of Comprehension. Informally, for any set X and any formula $\varphi(x,\bar{p})$ with parameters \bar{p} we have that $Y=\{u\in X\mid \varphi(u,\bar{p})\}$ is a set. Formally,

$$(\forall \bar{p})(\forall X)(\exists Y)(\forall u)((u \in Y) \leftrightarrow ((u \in X) \land \varphi(u, \bar{p}))).$$

Strategy, Part 0.

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1.

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x, \bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x, \bar{y})$ — which is constructed recursively —

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} .

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} . Let's separate the two steps into the problem of constructing

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} . Let's separate the two steps into the problem of constructing

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}$$

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} . Let's separate the two steps into the problem of constructing

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}$$

and then using this to construct

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} . Let's separate the two steps into the problem of constructing

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}$$

and then using this to construct

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} . Let's separate the two steps into the problem of constructing

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}$$

and then using this to construct

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

Strategy, Part 2.

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} . Let's separate the two steps into the problem of constructing

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}$$

and then using this to construct

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

Strategy, Part 2. The goal for the first construction will be to show how to express Z as the result of applying a sequence of Gödel operations to elements of M.

Strategy, Part 0. This part of the theorem will be proved by induction on the complexity of the formula φ .

Strategy, Part 1. A formula $\varphi(x,\bar{p})$ with parameters \bar{p} is obtained from a formula $\varphi(x,\bar{y})$ — which is constructed recursively — by substituting \bar{p} for \bar{y} . Let's separate the two steps into the problem of constructing

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}$$

and then using this to construct

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

Strategy, Part 2. The goal for the first construction will be to show how to express Z as the result of applying a sequence of Gödel operations to elements of M. Let's deal with the second construction next.

The Gödel operations are

The Gödel operations are (Jech, 1973)

The Gödel operations are (Jech, 1973))

•
$$\Gamma_1(x,y) = \{x,y\}$$

(Jech, 2003) modifies this by adding $\bigcup X, X \cap Y$ and modifying Γ_7 to:

The Gödel operations are (Jech, 1973))

- $\Gamma_1(x,y) = \{x,y\}$

(Jech, 2003) modifies this by adding $\bigcup X, X \cap Y$ and modifying Γ_7 to:

The Gödel operations are (Jech, 1973))

- **1** $\Gamma_1(x,y) = \{x,y\}$

The Gödel operations are (Jech, 1973))

- **1** $\Gamma_1(x,y) = \{x,y\}$

The Gödel operations are (Jech, 1973))

- **1** $\Gamma_1(x,y) = \{x,y\}$

The Gödel operations are (Jech, 1973))

- **1** $\Gamma_1(x,y) = \{x,y\}$

The Gödel operations are (Jech, 1973))

- $\Gamma_1(x,y) = \{x,y\}$

The Gödel operations are (Jech, 1973))

- $\Gamma_1(x,y) = \{x,y\}$

The Gödel operations are (Jech, 1973))

- $\Gamma_1(x,y) = \{x,y\}$

- **6** $\Gamma_6(x) = \{(a, b, c) \mid (b, c, a) \in x\}$

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets:

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y))$

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y)) = X - (X-Y)$

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y)) = X - (X-Y) = X \cap Y$.

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y)) = X - (X-Y) = X \cap Y$.

Using $\Gamma_4(X) = \text{dom}(X)$, we may construct the projection of a binary relation onto its first/(second) coordinate.

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \} \quad Z = \{ (x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y}) \}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y)) = X - (X-Y) = X \cap Y$.

Using $\Gamma_4(X) = \text{dom}(X)$, we may construct the projection of a binary relation onto its first/(second) coordinate.

Using
$$\Gamma_1(X,Y) = \{X,Y\}$$
 and \bar{p} we may construct $\Gamma_1(p_i,p_i) = \{p_i\}$.

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y)) = X - (X-Y) = X \cap Y$.

Using $\Gamma_4(X) = \text{dom}(X)$, we may construct the projection of a binary relation onto its first/(second) coordinate.

Using
$$\Gamma_1(X,Y) = \{X,Y\}$$
 and \bar{p} we may construct $\Gamma_1(p_i,p_i) = \{p_i\}$.

Using $\Gamma_3(X,Y)=X\times Y$ repeatedly we may construct the sets like X^2,X^3,\ldots and $X\times \{p_1\}\times\cdots\times \{p_n\}=X\times \{(p_1,\ldots,p_n)\}.$

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y)) = X - (X-Y) = X \cap Y$.

Using $\Gamma_4(X) = \text{dom}(X)$, we may construct the projection of a binary relation onto its first/(second) coordinate.

Using
$$\Gamma_1(X,Y) = \{X,Y\}$$
 and \bar{p} we may construct $\Gamma_1(p_i,p_i) = \{p_i\}$.

Using $\Gamma_3(X,Y)=X\times Y$ repeatedly we may construct the sets like X^2,X^3,\ldots and $X\times \{p_1\}\times\cdots\times \{p_n\}=X\times \{(p_1,\ldots,p_n)\}.$

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}\ Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Using $\Gamma_2(X,Y) = X - Y$, we may construct the intersection of two sets: $\Gamma_2(X,\Gamma_2(X,Y)) = X - (X-Y) = X \cap Y$.

Using $\Gamma_4(X) = \text{dom}(X)$, we may construct the projection of a binary relation onto its first/(second) coordinate.

Using $\Gamma_1(X,Y) = \{X,Y\}$ and \bar{p} we may construct $\Gamma_1(p_i,p_i) = \{p_i\}$.

Using $\Gamma_3(X,Y)=X\times Y$ repeatedly we may construct the sets like X^2,X^3,\ldots and $X\times \{p_1\}\times\cdots\times \{p_n\}=X\times \{(p_1,\ldots,p_n)\}.$

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

This would be easier if X contained all the parameters, so let's adjust to that case.

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

This would be easier if X contained all the parameters, so let's adjust to that case. We have $X \cup \{p_1, \dots, p_n\} \in V$,

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{x \in X \mid \varphi(x, \bar{p})\}.$$

This would be easier if X contained all the parameters, so let's adjust to that case. We have $X \cup \{p_1, \ldots, p_n\} \in V$, so since M is almost universal there is a set $\widehat{X} \in M$ such that $X \cup \{p_1, \ldots, p_n\} \subseteq \widehat{X}$.

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

This would be easier if X contained all the parameters, so let's adjust to that case. We have $X \cup \{p_1, \dots, p_n\} \in V$, so since M is almost universal there is a set $\widehat{X} \in M$ such that $X \cup \{p_1, \dots, p_n\} \subseteq \widehat{X}$. Now, construct $\widehat{Z} = \{(x, y_1, \dots, y_n) \in \widehat{X}^{n+1} \mid \varphi(x, \overline{y})\}.$

Suppose that $X \in M$ and $p_1, \ldots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

This would be easier if X contained all the parameters, so let's adjust to that case. We have $X \cup \{p_1, \dots, p_n\} \in V$, so since M is almost universal there is a set $\widehat{X} \in M$ such that $X \cup \{p_1, \dots, p_n\} \subseteq \widehat{X}$. Now, construct $\widehat{Z} = \{(x, y_1, \dots, y_n) \in \widehat{X}^{n+1} \mid \varphi(x, \overline{y})\}$. Intersect \widehat{Z} with $X \times \{(p_1, \dots, p_n)\}$ to obtain $Y \times \{(p_1, \dots, p_n)\}$.

Suppose that $X \in M$ and $p_1, \ldots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

This would be easier if X contained all the parameters, so let's adjust to that case. We have $X \cup \{p_1, \dots, p_n\} \in V$, so since M is almost universal there is a set $\widehat{X} \in M$ such that $X \cup \{p_1, \dots, p_n\} \subseteq \widehat{X}$. Now, construct $\widehat{Z} = \{(x, y_1, \dots, y_n) \in \widehat{X}^{n+1} \mid \varphi(x, \overline{y})\}$. Intersect \widehat{Z} with $X \times \{(p_1, \dots, p_n)\}$ to obtain $Y \times \{(p_1, \dots, p_n)\}$. Use Γ_4 to project onto the first coordinate,

Suppose that $X \in M$ and $p_1, \dots, p_n \in M$. Suppose that we can construct in M any set of the form:

$$Z = \{(x, y_1, \dots, y_n) \in X^{n+1} \mid \varphi(x, \bar{y})\}.$$

Our goal is to construct from such an element of M another element of M:

$$Y = \{ x \in X \mid \varphi(x, \bar{p}) \}.$$

This would be easier if X contained all the parameters, so let's adjust to that case. We have $X \cup \{p_1, \dots, p_n\} \in V$, so since M is almost universal there is a set $\widehat{X} \in M$ such that $X \cup \{p_1, \dots, p_n\} \subseteq \widehat{X}$. Now, construct $\widehat{Z} = \{(x, y_1, \dots, y_n) \in \widehat{X}^{n+1} \mid \varphi(x, \overline{y})\}$. Intersect \widehat{Z} with $X \times \{(p_1, \dots, p_n)\}$ to obtain $Y \times \{(p_1, \dots, p_n)\}$. Use Γ_4 to project onto the first coordinate, thereby obtaining Y.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M where φ is a formula in the language of set theory.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M where φ is a formula in the language of set theory. Since we have already proved that the Axiom of Extensionality holds in M, we may replace instances of equality (s = t) in φ with

$$(\forall u)((u \in s) \leftrightarrow (u \in t)).$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M where φ is a formula in the language of set theory. Since we have already proved that the Axiom of Extensionality holds in M, we may replace instances of equality (s = t) in φ with

$$(\forall u)((u \in s) \leftrightarrow (u \in t)).$$

Parameter-free continuation, Atomic Formulas

Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in ${\cal M}$ of the form

Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

It remains to explain how to construct sets in ${\cal M}$ of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1.

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ is an atomic formula)

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ is an atomic formula) I.e., it is of the form $y_i \in y_j$.

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ is an atomic formula) I.e., it is of the form $y_i \in y_j$. The proof is by induction on the length of the tuple (y_1, \ldots, y_n) .

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ is an atomic formula) I.e., it is of the form $y_i \in y_j$. The proof is by induction on the length of the tuple (y_1, \ldots, y_n) . There are many cases, and we explain only one:

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ) is an atomic formula) I.e., it is of the form $y_i \in y_j$. The proof is by induction on the length of the tuple (y_1, \ldots, y_n) . There are many cases, and we explain only one:

If
$$\varphi(\bar{y})$$
 is $y_{n-1} \in y_n$,

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ is an atomic formula) I.e., it is of the form $y_i \in y_j$. The proof is by induction on the length of the tuple (y_1, \ldots, y_n) . There are many cases, and we explain only one:

If $\varphi(\bar{y})$ is $y_{n-1} \in y_n$, then

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = X^{n-2} \times \Gamma_5(X),$$

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ is an atomic formula) I.e., it is of the form $y_i \in y_j$. The proof is by induction on the length of the tuple (y_1, \ldots, y_n) . There are many cases, and we explain only one:

If $\varphi(\bar{y})$ is $y_{n-1} \in y_n$, then

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = X^{n-2} \times \Gamma_5(X),$$

where $\Gamma_5(X) = \in |_X$

It remains to explain how to construct sets in M of the form

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}.$$

This is done by induction on the complexity of φ .

Case 1. (φ is an atomic formula) I.e., it is of the form $y_i \in y_j$. The proof is by induction on the length of the tuple (y_1, \ldots, y_n) . There are many cases, and we explain only one:

If $\varphi(\bar{y})$ is $y_{n-1} \in y_n$, then

$$Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = X^{n-2} \times \Gamma_5(X),$$

where $\Gamma_5(X) = \in |_X = \in \cap X^2$.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2.
$$(\varphi = \neg \alpha)$$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{ (y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y}) \}.$$

$$\Gamma_2(X^n, Z_\alpha)$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{ (y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y}) \}.$$

$$\Gamma_2(X^n, Z_\alpha) = \{(y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y})\}$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{ (y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y}) \}.$$

$$\Gamma_2(X^n, Z_\alpha) = \{ (y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y}) \}$$

= \{ (y_1, \dots, y_n) \in X^n \quad \varphi(\bar{y}) \}

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{ (y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y}) \}.$$

$$\Gamma_2(X^n, Z_\alpha) = \{(y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y})\}\$$

= $\{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = Z.$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{ (y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y}) \}$$

= $\{ (y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y}) \} = Z.$

Case 3.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{ (y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y}) \}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{ (y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y}) \}$$

= \{ (y_1, \dots, y_n) \in X^n \ \ \varphi(\bar{y}) \} = Z.

Case 3. $(\varphi = \alpha \wedge \beta)$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{(y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y})\}\$$

= $\{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = Z.$

Case 3. $(\varphi = \alpha \wedge \beta)$

Construct the following elements of M:

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{(y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y})\}\$$

= $\{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = Z.$

Case 3. $(\varphi = \alpha \wedge \beta)$

Construct the following elements of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}, \quad Z_{\beta} = \{(y_1, \dots, y_n) \in X^n \mid \beta(\bar{y})\}.$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{(y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y})\}\$$

= $\{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = Z.$

Case 3. $(\varphi = \alpha \wedge \beta)$

Construct the following elements of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}, \quad Z_{\beta} = \{(y_1, \dots, y_n) \in X^n \mid \beta(\bar{y})\}.$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{ (y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y}) \}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{ (y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y}) \}$$

= \{ (y_1, \dots, y_n) \in X^n \ \ \varphi(\bar{y}) \} = Z.

Case 3. $(\varphi = \alpha \wedge \beta)$

Construct the following elements of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}, \quad Z_{\beta} = \{(y_1, \dots, y_n) \in X^n \mid \beta(\bar{y})\}.$$

$$\Gamma_2(Z_{\alpha}, \Gamma_2(Z_{\alpha}, Z_{\beta}))$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{(y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y})\}\$$

= $\{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\} = Z.$

Case 3. $(\varphi = \alpha \wedge \beta)$

Construct the following elements of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}, \quad Z_{\beta} = \{(y_1, \dots, y_n) \in X^n \mid \beta(\bar{y})\}.$$

$$\Gamma_2(Z_{\alpha}, \Gamma_2(Z_{\alpha}, Z_{\beta})) = Z_{\alpha} \cap Z_{\beta}$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M.

Case 2. $(\varphi = \neg \alpha)$

Construct the following element of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}.$$

Then use $\Gamma_2(S,T) = S - T$ to construct the set-difference

$$\Gamma_2(X^n, Z_\alpha) = \{ (y_1, \dots, y_n) \in X^n \mid \neg \alpha(\bar{y}) \}$$

= \{ (y_1, \dots, y_n) \in X^n \ \ \varphi(\bar{y}) \} = Z.

Case 3. $(\varphi = \alpha \wedge \beta)$

Construct the following elements of M:

$$Z_{\alpha} = \{(y_1, \dots, y_n) \in X^n \mid \alpha(\bar{y})\}, \quad Z_{\beta} = \{(y_1, \dots, y_n) \in X^n \mid \beta(\bar{y})\}.$$

$$\Gamma_2(Z_\alpha, \Gamma_2(Z_\alpha, Z_\beta)) = Z_\alpha \cap Z_\beta = Z.$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S \in M$ there is a $T \in V$, such that $T \subseteq M$, and $S \subseteq T$ where for all $\bar{y} \in T$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S \in M$ there is a $T \in V$, such that $T \subseteq M$, and $S \subseteq T$ where for all $\bar{y} \in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof:

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \overline{y} , let $C_{\overline{y}}$ be the V-class $\{x \in M \mid \alpha(x,\overline{y})\}$.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \bar{y} , let $C_{\bar{y}}$ be the V-class $\{x \in M \mid \alpha(x,\bar{y})\}$. Thus, $\widehat{C}_{\bar{y}}$ is the V-set of minimal-rank elements of the V-class $C_{\bar{y}}$.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \overline{y} , let $C_{\overline{y}}$ be the V-class $\{x \in M \mid \alpha(x,\overline{y})\}$. Thus, $\widehat{C}_{\overline{y}}$ is the V-set of minimal-rank elements of the V-class $C_{\overline{y}}$.

Given
$$X \in V$$
 with $X \subseteq M$, define $\Delta(X) = X \cup \bigcup \{\widehat{C}_{\bar{y}} \mid \bar{y} \in X^n\}$ in V .

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \bar{y} , let $C_{\bar{y}}$ be the V-class $\{x \in M \mid \alpha(x,\bar{y})\}$. Thus, $\widehat{C}_{\bar{y}}$ is the V-set of minimal-rank elements of the V-class $C_{\bar{y}}$.

Given $X \in V$ with $X \subseteq M$, define $\Delta(X) = X \cup \bigcup \{\widehat{C}_{\bar{y}} \mid \bar{y} \in X^n\}$ in V. Note that $\Delta(X) \in V$ and $\Delta(X) \subseteq M$.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \bar{y} , let $C_{\bar{y}}$ be the V-class $\{x \in M \mid \alpha(x,\bar{y})\}$. Thus, $\widehat{C}_{\bar{y}}$ is the V-set of minimal-rank elements of the V-class $C_{\bar{y}}$.

Given $X \in V$ with $X \subseteq M$, define $\Delta(X) = X \cup \bigcup \{\widehat{C}_{\bar{y}} \mid \bar{y} \in X^n\}$ in V. Note that $\Delta(X) \in V$ and $\Delta(X) \subseteq M$. Start at S, iterate Δ , and take the union in $V \colon T := \bigcup \Delta^m(S)$.

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \overline{y} , let $C_{\overline{y}}$ be the V-class $\{x \in M \mid \alpha(x,\overline{y})\}$. Thus, $\widehat{C}_{\overline{y}}$ is the V-set of minimal-rank elements of the V-class $C_{\overline{y}}$.

Given $X \in V$ with $X \subseteq M$, define $\Delta(X) = X \cup \bigcup \{\widehat{C}_{\bar{y}} \mid \bar{y} \in X^n\}$ in V. Note that $\Delta(X) \in V$ and $\Delta(X) \subseteq M$. Start at S, iterate Δ , and take the union in $V \colon T := \bigcup \Delta^m(S)$. The result is a set $T \in V$ such that $T \subseteq M$ and for all $\bar{y} \in T$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \bar{y} , let $C_{\bar{y}}$ be the V-class $\{x \in M \mid \alpha(x,\bar{y})\}$. Thus, $\widehat{C}_{\bar{y}}$ is the V-set of minimal-rank elements of the V-class $C_{\bar{y}}$.

Given $X \in V$ with $X \subseteq M$, define $\Delta(X) = X \cup \bigcup \{\widehat{C}_{\bar{y}} \mid \bar{y} \in X^n\}$ in V. Note that $\Delta(X) \in V$ and $\Delta(X) \subseteq M$. Start at S, iterate Δ , and take the union in $V \colon T := \bigcup \Delta^m(S)$. The result is a set $T \in V$ such that $T \subseteq M$ and for all $\bar{y} \in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

We want to construct $Z = \{(y_1, \dots, y_n) \in X^n \mid \varphi(\bar{y})\}$ in M in the case where $\varphi(\bar{y}) = (\exists x)\alpha(x, \bar{y})$.

Bounding Lemma. For each $S\in M$ there is a $T\in V$, such that $T\subseteq M$, and $S\subseteq T$ where for all $\bar{y}\in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Proof: For any class C in V, let \widehat{C} be the V-set of minimal-rank elements of C in V. Given \bar{y} , let $C_{\bar{y}}$ be the V-class $\{x \in M \mid \alpha(x,\bar{y})\}$. Thus, $\widehat{C}_{\bar{y}}$ is the V-set of minimal-rank elements of the V-class $C_{\bar{y}}$.

Given $X \in V$ with $X \subseteq M$, define $\Delta(X) = X \cup \bigcup \{\widehat{C}_{\bar{y}} \mid \bar{y} \in X^n\}$ in V. Note that $\Delta(X) \in V$ and $\Delta(X) \subseteq M$. Start at S, iterate Δ , and take the union in $V \colon T := \bigcup \Delta^m(S)$. The result is a set $T \in V$ such that $T \subseteq M$ and for all $\bar{y} \in T$

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}). \quad \Box$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x) \alpha(x, \bar{y})\}.$

Given X

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T \supseteq X, T \in V, T \subseteq M$ such that

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T \supseteq X, T \in V, T \subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T\supseteq X, T\in V, T\subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T\supseteq X, T\in V, T\subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T \supseteq X$, $T \in V$, $T \subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

By induction, $\{(u, \bar{w}) \in U^n \mid \alpha(u, \bar{w})\}$ is generated by elements of M under some composition Γ of Gödel operations.

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x) \alpha(x, \bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T\supseteq X, T\in V, T\subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

$$M \models (\exists u) \alpha(u, \bar{w})$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T \supseteq X$, $T \in V$, $T \subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

$$M \models (\exists u)\alpha(u, \bar{w}) \quad \leftrightarrow (\exists u \in U)M \models \alpha(u, \bar{w})$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T\supseteq X, T\in V, T\subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

$$M \models (\exists u)\alpha(u, \bar{w}) \quad \leftrightarrow (\exists u \in U)M \models \alpha(u, \bar{w}) \\ \leftrightarrow (\exists u \in U)((u, \bar{w}) \in \Gamma(U, \bar{W}))$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T\supseteq X, T\in V, T\subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

$$\begin{array}{ll} M \models (\exists u) \alpha(u, \bar{w}) & \leftrightarrow (\exists u \in U) M \models \alpha(u, \bar{w}) \\ & \leftrightarrow (\exists u \in U) ((u, \bar{w}) \in \Gamma(U, \bar{W})) \\ & \leftrightarrow \bar{w} \in (X^n \cap \mathsf{dom}^r(\Gamma(U, \bar{W}))) \end{array}$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T \supseteq X, T \in V, T \subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

$$\begin{split} M &\models (\exists u) \alpha(u, \bar{w}) & \leftrightarrow (\exists u \in U) M \models \alpha(u, \bar{w}) \\ & \leftrightarrow (\exists u \in U) ((u, \bar{w}) \in \Gamma(U, \bar{W})) \\ & \leftrightarrow \bar{w} \in (X^n \cap \mathsf{dom}^r(\Gamma(U, \bar{W}))) \\ & \leftrightarrow \bar{w} \in Z. \end{split}$$

We want to construct $Z = \{\bar{y} \in X^n \mid (\exists x)\alpha(x,\bar{y})\}.$

Given X(=S), the Bounding Lemma yields $T\supseteq X, T\in V, T\subseteq M$ such that

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in T) \ \alpha(x, \bar{y}).$$

Since M is almost universal, we may find $U \supseteq T$ such that $U \in M$ and

$$(\exists x) \ \alpha(x, \bar{y}) \to (\exists x \in U) \ \alpha(x, \bar{y}).$$

$$\begin{aligned} M &\models (\exists u) \alpha(u, \bar{w}) & \leftrightarrow (\exists u \in U) M \models \alpha(u, \bar{w}) \\ & \leftrightarrow (\exists u \in U) ((u, \bar{w}) \in \Gamma(U, \bar{W})) \\ & \leftrightarrow \bar{w} \in (X^n \cap \mathsf{dom}^r(\Gamma(U, \bar{W}))) \\ & \leftrightarrow \bar{w} \in Z. \quad \Box \end{aligned}$$