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Theorem. Let V' be a model of ZF. Let M be a class in V. If M is
@ transitive,
© almost universal, and
© closed under the Godel operations,

then M is a model of ZF.

The only part left to prove is that, if the hypotheses hold, then M satisfies the
Axiom of Comprehension. Informally, for any set X and any formula ¢(x, p)
with parameters p we have that Y = {u € X | p(u,p)} is a set. Formally,

(Vp)(VX)(FY)(Vu)((u € V) < ((u € X) A p(u, p)))-
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Strategy, Part 0. This part of the theorem will be proved by induction on the
complexity of the formula ¢.

Strategy, Part 1. A formula ¢(z, p) with parameters p is obtained from a
formula ¢(x, y) — which is constructed recursively — by substituting p for y.
Let’s separate the two steps into the problem of constructing

Z = {(Iaylv"‘ 7yn) € Xt ’ QO(QZ,Q)}

and then using this to construct

Y={z¢eX|p(p}h

Strategy, Part 2.
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express Z as the result of applying a sequence of Godel operations to
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Strategy, Part 0. This part of the theorem will be proved by induction on the
complexity of the formula ¢.

Strategy, Part 1. A formula ¢(z, p) with parameters p is obtained from a
formula ¢(x, y) — which is constructed recursively — by substituting p for y.
Let’s separate the two steps into the problem of constructing

Z = {(Iaylv"‘ 7yn) € Xt ’ QO(QZ,Q)}

and then using this to construct

Y={z¢eX|p(p}h

Strategy, Part 2. The goal for the first construction will be to show how to
express Z as the result of applying a sequence of Godel operations to
elements of M. Let’s deal with the second construction next.
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The Godel operations are (Jech, 1973) )

0 I'i(z,y) = {z,y}

Q@ Iy(r,y)=x—y

@ Ty(e,y) = xy

Q I'y(xz) = dom(x)

@ ['5(x) =€ |, =€ N(z x x)

0 T's(z) ={(a,b,c) | (b,c,a) € x}
Q@ I'7(z) ={(a,b,¢) | (¢,b,a) € x}

o F8< ) - {(a7b70) ’ (a,c,b) € .’L'}
(Jech, 2003) modifies this by adding |J X, X N'Y and modifying I'7 to:
Q I'7(z) = {(b,a) | (a,b) € x}
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M any set of the form:
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Constructing Y from Z and p, Part 2

Suppose that X € M and p1,...,p, € M. Suppose that we can construct in
M any set of the form:

Z = {(I7y17 s ,yn) € Xn+1 | 90(93,@}
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Constructing Y from Z and p, Part 2

Suppose that X € M and p1,...,p, € M. Suppose that we can construct in
M any set of the form:

Z = {(1:73/17 s ,yn) € Xn+1 | (p(ﬂjvg)}

Our goal is to construct from such an element of M another element of M :

Y ={zeX|p(p)}
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This would be easier if X contained all the parameters, so let’s adjust to that
case.
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M any set of the form:
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Our goal is to construct from such an element of M another element of M :
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case. We have X U {p1,...,pn} € V, so since M is almost universal there is
aset X € M such that X U {p1,...,pn} C X.
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Constructing Y from Z and p, Part 2

Suppose that X € M and p1,...,p, € M. Suppose that we can construct in
M any set of the form:

Z = {(1:73/17 s ,yn) € Xn+1 | (p(ﬂjvg)}

Our goal is to construct from such an element of M another element of M :
Y ={zeX|p(p)}

This would be easier if X contained all the parameters, so let’s adjust to that
case. We have X U {p1,...,pn} € V, so since M is almost universal there is
aset X € M such that X U {p1,...,pn} € X. Now, construct

2 = {(x7y17"‘7y7’b) € j{*n—‘,—l ‘ (P(l',g)}
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Constructing Y from Z and p, Part 2

Suppose that X € M and p1,...,p, € M. Suppose that we can construct in
M any set of the form:

Z = {(1:73/17 s ,yn) € Xn+1 | (p(ﬂjvg)}

Our goal is to construct from such an element of M another element of M :

Y ={zeX|p(p)}

This would be easier if X contained all the parameters, so let’s adjust to that
case. We have X U {p1,...,pn} € V, so since M is almost universal there is
aset X € M such that X U {p1,--.,pn} C X . Now, construct

Z ={(x,y1,...,yn) € X" | p(z,7)}. Intersect Z with

X x{(p1,...,pn)} toobtain Y x {(p1,...,pn)}
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Constructing Y from Z and p, Part 2

Suppose that X € M and p1,...,p, € M. Suppose that we can construct in
M any set of the form:

Z = {(1:73/17 s ,yn) € Xn+1 | (p(ﬂjvg)}

Our goal is to construct from such an element of M another element of M :

Y ={zeX|p(p)}

This would be easier if X contained all the parameters, so let’s adjust to that
case. We have X U {p1,...,pn} € V, so since M is almost universal there is
aset X € M such that X U {p1,--.,pn} C X . Now, construct

Z ={(x,y1,...,yn) € X" | p(z,7)}. Intersect Z with

X x{(p1,...,pn)} toobtain Y x {(p1,...,pn)}. Use I'y to project onto the
first coordinate,
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Constructing Y from Z and p, Part 2

Suppose that X € M and p1,...,p, € M. Suppose that we can construct in
M any set of the form:

Z = {(1:73/17 s ,yn) € Xn+1 | (p(ﬂjvg)}

Our goal is to construct from such an element of M another element of M :

Y ={zeX|p(p)}

This would be easier if X contained all the parameters, so let’s adjust to that
case. We have X U {p1,...,pn} € V, so since M is almost universal there is
aset X € M such that X U {p1,--.,pn} C X . Now, construct

Z ={(x,y1,...,yn) € X" | p(z,7)}. Intersect Z with

X x{(p1,...,pn)} toobtain Y x {(p1,...,pn)}. Use I'y to project onto the
first coordinate, thereby obtaining Y.
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M where ¢ is a
formula in the language of set theory.
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Avoiding equality in ¢

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M where ¢ is a
formula in the language of set theory. Since we have already proved that the
Axiom of Extensionality holds in M, we may replace instances of equality
(s =t) in ¢ with

(Vu)((u € s) <> (u €t)).
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This is done by induction on the complexity of .
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Case 1.
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

Z={(W1,--,yn) € X" | p(7)}.

This is done by induction on the complexity of .

Case 1. (¢ is an atomic formula)
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

Z={(W1,--,yn) € X" | p(7)}.

This is done by induction on the complexity of .

Case 1. (i is an atomic formula) Le., it is of the form y; € y;.
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form
Z={(y1,-- - yn) € X" | 0(1)}-
This is done by induction on the complexity of .

Case 1. (i is an atomic formula) Le., it is of the form y; € ;. The proof is by
induction on the length of the tuple (y1, ..., yn).
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It remains to explain how to construct sets in M of the form
Z={(y1,-- - yn) € X" | 0(1)}-
This is done by induction on the complexity of .

Case 1. (i is an atomic formula) Le., it is of the form y; € ;. The proof is by
induction on the length of the tuple (y1, ..., y,). There are many cases, and
we explain only one:
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

Z={(W1,--,yn) € X" | p(7)}.

This is done by induction on the complexity of .

Case 1. (i is an atomic formula) Le., it is of the form y; € ;. The proof is by
induction on the length of the tuple (y1, ..., ¥, ). There are many cases, and
we explain only one:

If o(y) is Yn—1 € Yn.
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

Z={(W1,--,yn) € X" | p(7)}.

This is done by induction on the complexity of .

Case 1. (i is an atomic formula) Le., it is of the form y; € ;. The proof is by
induction on the length of the tuple (y1, ..., ¥, ). There are many cases, and
we explain only one:
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

Z={(W1,--,yn) € X" | p(7)}.

This is done by induction on the complexity of .

Case 1. (i is an atomic formula) Le., it is of the form y; € ;. The proof is by
induction on the length of the tuple (y1, ..., ¥, ). There are many cases, and
we explain only one:

If ©() 18 Yn—1 € Yn, then

Z={(y1,---,yn) € X" | p(®)} = X" xT5(X),

where I's(X) = € |x
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

Z={(W1,--,yn) € X" | p(7)}.

This is done by induction on the complexity of .

Case 1. (i is an atomic formula) Le., it is of the form y; € ;. The proof is by
induction on the length of the tuple (y1, ..., ¥, ). There are many cases, and
we explain only one:

If ©() 18 Yn—1 € Yn, then

Z={(y1,---,yn) € X" | p(®)} = X" xT5(X),

where ['5(X) = €|x = €nNX2
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo={(y1,-- . yn) € X" | (9)}.
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

F2(Xn,Za)
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo={(y1,-- . yn) € X" | (9)}.

Then use I'3(S, T) = S — T to construct the set-difference

Lo(X"™ Za) = {(yr,--,yn) € X | ma(y)}
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

Do(X™, Zo) ={(y1,--- un) € X" | ma(y)}
={(y1,---,yn) € X" | 0(9)}

Verifying the Axiom of Comprehension



Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

F2(Xn’Z04) = {(yla cee 7yn) e X" ‘ —'04(17)}
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

F2(Xn’Z04) = {(yla cee 7yn) e X" ‘ —'04(17)}
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

F2(Xn’Z04) = {(yla cee 7yn) e X" ‘ —'04(17)}
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

F2(Xn’Z04) = {(yla cee 7yn) e X" ‘ —'04(17)}

Case3. (p=aAp)
Construct the following elements of M:
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

F2(Xn’Z04) = {(yla cee 7yn) e X" ‘ —'04(17)}

Case3. (p=aAp)
Construct the following elements of M:

Za =AW, yyn) € X" [ (@)}, Zo = {(y1s--sun) € X [ B(Y)}-
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | p(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo ={(Y1,---,yn) € X" | a(p)}.
Then use I'3(S, T) = S — T to construct the set-difference

Do(X™, Zo) ={(y1,--- un) € X" | ma(y)}
={(y1,--sun) €EX" | 0(y)} =Z

Case3. (p=aAp)
Construct the following elements of M:

Za =AW, yyn) € X" [ (@)}, Zo = {(y1s--sun) € X [ B(Y)}-

Then use set-difference to construct their intersection:

Verifying the Axiom of Comprehension



Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | p(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo={(y1,-- . yn) € X" | (9)}.

Then use I'3(S, T) = S — T to construct the set-difference

Do(X™, Zo) ={(y1,--- un) € X" | ma(y)}
={(y1,--sun) €EX" | 0(y)} =Z

Case3. (p=aAp)
Construct the following elements of M:

Za =AW, yyn) € X" [ (@)}, Zo = {(y1s--sun) € X [ B(Y)}-

Then use set-difference to construct their intersection:
I'2(Za,T2(Zo, Z3))
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | p(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo={(y1,-- . yn) € X" | (9)}.

Then use I'3(S, T) = S — T to construct the set-difference

Do(X™, Zo) ={(y1,--- un) € X" | ma(y)}
={(y1,--sun) €EX" | 0(y)} =Z

Case3. (p=aAp)
Construct the following elements of M:

Za =AW, yyn) € X" [ (@)}, Zo = {(y1s--sun) € X [ B(Y)}-

Then use set-difference to construct their intersection:
I'2(Z0,T9(Z0, Z3)) = Zoa N Zg
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Parameter-free continuation, Connectives

We want to construct Z = {(y1,...,yn) € X" | p(y)} in M.

Case 2. (p = )
Construct the following element of M:

Zo={(y1,-- . yn) € X" | (9)}.

Then use I'3(S, T) = S — T to construct the set-difference

Do(X™, Zo) ={(y1,--- un) € X" | ma(y)}
={(y1,--sun) €EX" | 0(y)} =Z

Case3. (p=aAp)
Construct the following elements of M:

Za =AW, yyn) € X" [ (@)}, Zo = {(y1s--sun) € X [ B(Y)}-

Then use set-difference to construct their intersection:
I'2(Z0,T9(Z0, Z3)) = Za N Zpg = Z.
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma.
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Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof:
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
CinV.
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
C'in V. Given y, let Cj be the V-class {x € M | a(x,y)}.
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
C'in V. Given ¥, let Cj be the V-class {x € M | a(x,y)}. Thus, Cj is the
V-set of minimal-rank elements of the V-class Cj.
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
C'in V. Given ¥, let Cj be the V-class {x € M | a(x,y)}. Thus, 6’; is the
V-set of minimal-rank elements of the V-class Cj.

Given X € V with X C M, define A(X) =X U U{@ |lye X"}inV.
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
C'in V. Given ¥, let Cj be the V-class {x € M | a(x,y)}. Thus, 6’; is the
V-set of minimal-rank elements of the V-class Cj.

Given X € V with X C M, define A(X) =X U U{@ |lye X"}inV.
Note that A(X) € V and A(X) C M.
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
C'in V. Given ¥, let Cj be the V-class {x € M | a(x,y)}. Thus, 6’; is the
V-set of minimal-rank elements of the V-class Cj.

Given X € V with X C M, define A(X) =X U U{@ |lye X"}inV.
Note that A(X) € V and A(X) C M. Start at S, iterate A, and take the
unionin V: T := [JA™(S).
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
C'in V. Given ¥, let Cj be the V-class {x € M | a(x,y)}. Thus, 6’; is the
V-set of minimal-rank elements of the V-class Cj.
Given X € V with X C M, define A(X) =X U U{@ |lye X"}inV.
Note that A(X) € V and A(X) C M. Start at S, iterate A, and take the
union in V: T":= [JA™(S). The resultis a set T" € V such that ' C M and
forally e T

(Fz) a(z,y) = (Fz €T) a(x,y).

Verifying the Axiom of Comprehension 10/11
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We want to construct Z = {(y1,...,yn) € X" | ¢(y)} in M in the case
where o(7) = (F)a(z, ).

Bounding Lemma. For each S € M thereisal € V, such that T C M, and
S C T where forally € T

(Fz) a(z,y) - (Fx € T) alz,y).

Proof: For any class C'in V, let C be the V-set of minimal-rank elements of
C'in V. Given ¥, let Cj be the V-class {x € M | a(x,y)}. Thus, 6’; is the
V-set of minimal-rank elements of the V-class Cj.
Given X € V with X C M, define A(X) =X U U{@ |lye X"}inV.
Note that A(X) € V and A(X) C M. Start at S, iterate A, and take the
union in V: T":= [JA™(S). The resultis a set T" € V such that ' C M and
forally e T

(Fz) a(z,y) - (Fz €T) a(x,y). O
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We want to construct Z = {y € X" | (3z)a(z,y)}.
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Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that
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We want to construct Z = {y € X" | (Fz)a(x,y)}.

Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that

(Fz) a(z,y) — Bz € T) a(x, y).
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We want to construct Z = {y € X" | (Fz)a(x,y)}.

Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that
(Fz) a(z,y) — Bz € T) a(x, y).

Since M is almost universal, we may find U O T such that U € M and
(3z) a(z,y) = (Fz € U) alx,y).

By induction, {(u,w) € U™ | a(u, w)} is generated by elements of M under some
composition I' of Godel operations.
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We want to construct Z = {y € X" | (Fz)a(x,y)}.

Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that
(Fz) a(z,y) — Bz € T) a(x, y).

Since M is almost universal, we may find U O T such that U € M and
(3z) a(z,y) = (Fz € U) alx,y).

By induction, {(u,w) € U™ | a(u, w)} is generated by elements of M under some
composition I' of Gddel operations. Thus M | a(u, w) iff T(U, Wy, ..., W,,) for
some U, W; € M. It follows that, for all w € X",

M = (Ju)a(u, w)
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We want to construct Z = {y € X" | (Fz)a(x,y)}.

Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that
(Fz) a(z,y) — Bz € T) a(x, y).

Since M is almost universal, we may find U O T such that U € M and
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We want to construct Z = {y € X" | (Fz)a(x,y)}.

Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that
(Fz) a(z,y) — Bz € T) a(x, y).

Since M is almost universal, we may find U O T such that U € M and
(3z) a(z,y) = (Fz € U) alx,y).

By induction, {(u,w) € U™ | a(u, w)} is generated by elements of M under some
composition I' of Gddel operations. Thus M | a(u, w) iff T(U, Wy, ..., W,,) for
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Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that
(Fz) a(z,y) — Bz € T) a(x, y).

Since M is almost universal, we may find U O T such that U € M and
(3z) a(z,y) = (Fz € U) alx,y).

By induction, {(u,w) € U™ | a(u, w)} is generated by elements of M under some
composition I' of Gddel operations. Thus M | a(u, w) iff T(U, Wy, ..., W,,) for
some U, W; € M. It follows that, for all w € X",
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Given X (= S), the Bounding Lemma yields T 2 X, T € V, T C M such that
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Since M is almost universal, we may find U O T such that U € M and
(3z) a(z,y) = (Fz € U) alx,y).

By induction, {(u,w) € U™ | a(u, w)} is generated by elements of M under some
composition I' of Gddel operations. Thus M | a(u, w) iff T(U, Wy, ..., W,,) for
some U, W; € M. It follows that, for all w € X",

M = (Fu)a(u,w) <« (FueU)M E au,w)
© (Jue U)((u,w) € DU, W))
> we (X" ﬂdomT(F( L))
weZ O

Verifying the Axiom of Comprehension



