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The theorem to be proved

Theorem. Let V be a model of ZF. Let M be a class in V . If M is

1 transitive,
2 almost universal, and
3 closed under the Gödel operations,

then M is a model of ZF.

The only part left to prove is that, if the hypotheses hold, then M satisfies the
Axiom of Comprehension. Informally, for any set X and any formula φ(x, p̄)
with parameters p̄ we have that Y = {u ∈ X | φ(u, p̄)} is a set. Formally,

(∀p̄)(∀X)(∃Y )(∀u)((u ∈ Y ) ↔ ((u ∈ X) ∧ φ(u, p̄))).
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Strategy

Strategy, Part 0. This part of the theorem will be proved by induction on the
complexity of the formula φ.

Strategy, Part 1. A formula φ(x, p̄) with parameters p̄ is obtained from a
formula φ(x, ȳ) — which is constructed recursively — by substituting p̄ for ȳ.
Let’s separate the two steps into the problem of constructing

Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}

and then using this to construct

Y = {x ∈ X | φ(x, p̄)}.

Strategy, Part 2. The goal for the first construction will be to show how to
express Z as the result of applying a sequence of Gödel operations to
elements of M . Let’s deal with the second construction next.
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Let’s separate the two steps into the problem of constructing

Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}

and then using this to construct

Y = {x ∈ X | φ(x, p̄)}.

Strategy, Part 2. The goal for the first construction will be to show how to
express Z as the result of applying a sequence of Gödel operations to
elements of M . Let’s deal with the second construction next.

Verifying the Axiom of Comprehension 3 / 11



Strategy

Strategy, Part 0. This part of the theorem will be proved by induction on the
complexity of the formula φ.

Strategy, Part 1. A formula φ(x, p̄) with parameters p̄ is obtained from a
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formula φ(x, ȳ) — which is constructed recursively — by substituting p̄ for ȳ.
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Let’s separate the two steps into the problem of constructing

Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}
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Let’s separate the two steps into the problem of constructing

Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}

and then using this to construct

Y = {x ∈ X | φ(x, p̄)}.

Strategy, Part 2. The goal for the first construction will be to show how to
express Z as the result of applying a sequence of Gödel operations to
elements of M . Let’s deal with the second construction next.

Verifying the Axiom of Comprehension 3 / 11



Strategy

Strategy, Part 0. This part of the theorem will be proved by induction on the
complexity of the formula φ.

Strategy, Part 1. A formula φ(x, p̄) with parameters p̄ is obtained from a
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Let’s separate the two steps into the problem of constructing

Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}
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Reminder!

The Gödel operations are (Jech, 1973) )

1 Γ1(x, y) = {x, y}
2 Γ2(x, y) = x − y

3 Γ3(x, y) = x × y

4 Γ4(x) = dom(x)
5 Γ5(x) =∈ |x =∈ ∩(x × x)
6 Γ6(x) = {(a, b, c) | (b, c, a) ∈ x}
7 Γ7(x) = {(a, b, c) | (c, b, a) ∈ x}
8 Γ8(x) = {(a, b, c) | (a, c, b) ∈ x}

(Jech, 2003) modifies this by adding
⋃

X, X ∩ Y and modifying Γ7 to:

1 Γ7(x) = {(b, a) | (a, b) ∈ x}
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1 Γ7(x) = {(b, a) | (a, b) ∈ x}
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Constructing Y from Z and p̄, Part 1

Y = {x ∈ X | φ(x, p̄)} Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}.

Using Γ2(X, Y ) = X − Y , we may construct the intersection of two sets:
Γ2(X, Γ2(X, Y )) = X − (X − Y ) = X ∩ Y .

Using Γ4(X) = dom(X), we may construct the projection of a binary relation onto
its first/(second) coordinate.

Using Γ1(X, Y ) = {X, Y } and p̄ we may construct Γ1(pi, pi) = {pi}.

Using Γ3(X, Y ) = X × Y repeatedly we may construct the sets like X2, X3, . . . and
X × {p1} × · · · × {pn} = X × {(p1, . . . , pn)}.
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Using Γ2(X, Y ) = X − Y , we may construct the intersection of two sets:
Γ2(X, Γ2(X, Y )) = X − (X − Y ) = X ∩ Y .

Using Γ4(X) = dom(X), we may construct the projection of a binary relation onto
its first/(second) coordinate.

Using Γ1(X, Y ) = {X, Y } and p̄ we may construct Γ1(pi, pi) = {pi}.

Using Γ3(X, Y ) = X × Y repeatedly we may construct the sets like X2, X3, . . . and
X × {p1} × · · · × {pn} = X × {(p1, . . . , pn)}.

Verifying the Axiom of Comprehension 5 / 11



Constructing Y from Z and p̄, Part 1

Y = {x ∈ X | φ(x, p̄)} Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}.
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Constructing Y from Z and p̄, Part 2

Suppose that X ∈ M and p1, . . . , pn ∈ M . Suppose that we can construct in
M any set of the form:

Z = {(x, y1, . . . , yn) ∈ Xn+1 | φ(x, ȳ)}.

Our goal is to construct from such an element of M another element of M :

Y = {x ∈ X | φ(x, p̄)}.

This would be easier if X contained all the parameters, so let’s adjust to that
case. We have X ∪ {p1, . . . , pn} ∈ V , so since M is almost universal there is
a set X̂ ∈ M such that X ∪ {p1, . . . , pn} ⊆ X̂ . Now, construct
Ẑ = {(x, y1, . . . , yn) ∈ X̂n+1 | φ(x, ȳ)}. Intersect Ẑ with
X × {(p1, . . . , pn)} to obtain Y × {(p1, . . . , pn)}. Use Γ4 to project onto the
first coordinate, thereby obtaining Y .
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Avoiding equality in φ

We want to construct Z = {(y1, . . . , yn) ∈ Xn | φ(ȳ)} in M where φ is a
formula in the language of set theory. Since we have already proved that the
Axiom of Extensionality holds in M , we may replace instances of equality
(s = t) in φ with

(∀u)((u ∈ s) ↔ (u ∈ t)).
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formula in the language of set theory.

Since we have already proved that the
Axiom of Extensionality holds in M , we may replace instances of equality
(s = t) in φ with

(∀u)((u ∈ s) ↔ (u ∈ t)).

Verifying the Axiom of Comprehension 7 / 11



Avoiding equality in φ

We want to construct Z = {(y1, . . . , yn) ∈ Xn | φ(ȳ)} in M where φ is a
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Parameter-free continuation, Atomic Formulas

It remains to explain how to construct sets in M of the form

Z = {(y1, . . . , yn) ∈ Xn | φ(ȳ)}.

This is done by induction on the complexity of φ.

Case 1. (φ is an atomic formula) I.e., it is of the form yi ∈ yj . The proof is by
induction on the length of the tuple (y1, . . . , yn). There are many cases, and
we explain only one:
If φ(ȳ) is yn−1 ∈ yn, then

Z = {(y1, . . . , yn) ∈ Xn | φ(ȳ)} = Xn−2 × Γ5(X),

where Γ5(X) = ∈ |X = ∈ ∩X2.
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This is done by induction on the complexity of φ.

Case 1. (φ is an atomic formula) I.e., it is of the form yi ∈ yj . The proof is by
induction on the length of the tuple (y1, . . . , yn). There are many cases, and
we explain only one:
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Parameter-free continuation, Connectives

We want to construct Z = {(y1, . . . , yn) ∈ Xn | φ(ȳ)} in M .

Case 2. (φ = ¬α)
Construct the following element of M :

Zα = {(y1, . . . , yn) ∈ Xn | α(ȳ)}.

Then use Γ2(S, T ) = S − T to construct the set-difference

Γ2(Xn, Zα) = {(y1, . . . , yn) ∈ Xn | ¬α(ȳ)}
= {(y1, . . . , yn) ∈ Xn | φ(ȳ)} = Z.

Case 3. (φ = α ∧ β)
Construct the following elements of M :

Zα = {(y1, . . . , yn) ∈ Xn | α(ȳ)}, Zβ = {(y1, . . . , yn) ∈ Xn | β(ȳ)}.

Then use set-difference to construct their intersection:
Γ2(Zα, Γ2(Zα, Zβ)) = Zα ∩ Zβ = Z.
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Case 3. (φ = α ∧ β)
Construct the following elements of M :
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Case 2. (φ = ¬α)
Construct the following element of M :

Zα = {(y1, . . . , yn) ∈ Xn | α(ȳ)}.
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= {(y1, . . . , yn) ∈ Xn | φ(ȳ)} = Z.
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= {(y1, . . . , yn) ∈ Xn | φ(ȳ)} = Z.
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= {(y1, . . . , yn) ∈ Xn | φ(ȳ)} = Z.

Case 3. (φ = α ∧ β)
Construct the following elements of M :
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Case 2. (φ = ¬α)
Construct the following element of M :

Zα = {(y1, . . . , yn) ∈ Xn | α(ȳ)}.

Then use Γ2(S, T ) = S − T to construct the set-difference

Γ2(Xn, Zα) = {(y1, . . . , yn) ∈ Xn | ¬α(ȳ)}
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Case 2. (φ = ¬α)
Construct the following element of M :

Zα = {(y1, . . . , yn) ∈ Xn | α(ȳ)}.
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Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1, . . . , yn) ∈ Xn | φ(ȳ)} in M in the case
where φ(ȳ) = (∃x)α(x, ȳ).

Bounding Lemma. For each S ∈ M there is a T ∈ V , such that T ⊆ M , and
S ⊆ T where for all ȳ ∈ T

(∃x) α(x, ȳ) → (∃x ∈ T ) α(x, ȳ).

Proof: For any class C in V , let Ĉ be the V -set of minimal-rank elements of
C in V . Given ȳ, let Cȳ be the V -class {x ∈ M | α(x, ȳ)}. Thus, Ĉȳ is the
V -set of minimal-rank elements of the V -class Cȳ.
Given X ∈ V with X ⊆ M , define ∆(X) = X ∪

⋃
{Ĉȳ | ȳ ∈ Xn} in V .

Note that ∆(X) ∈ V and ∆(X) ⊆ M . Start at S, iterate ∆, and take the
union in V : T :=

⋃
∆m(S). The result is a set T ∈ V such that T ⊆ M and

for all ȳ ∈ T
(∃x) α(x, ȳ) → (∃x ∈ T ) α(x, ȳ). 2
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Bounding Lemma. For each S ∈ M there is a T ∈ V , such that T ⊆ M , and
S ⊆ T where for all ȳ ∈ T
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(∃x) α(x, ȳ) → (∃x ∈ T ) α(x, ȳ). 2
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Verifying the Axiom of Comprehension 10 / 11



Parameter-free continuation, Existential Quantifier, Part 1

We want to construct Z = {(y1, . . . , yn) ∈ Xn | φ(ȳ)} in M in the case
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V -set of minimal-rank elements of the V -class Cȳ.
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(∃x) α(x, ȳ) → (∃x ∈ T ) α(x, ȳ). 2
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Parameter-free continuation, Existential Quantifier, Part 2

We want to construct Z = {ȳ ∈ Xn | (∃x)α(x, ȳ)}.

Given X(= S), the Bounding Lemma yields T ⊇ X , T ∈ V , T ⊆ M such that

(∃x) α(x, ȳ) → (∃x ∈ T ) α(x, ȳ).

Since M is almost universal, we may find U ⊇ T such that U ∈ M and

(∃x) α(x, ȳ) → (∃x ∈ U) α(x, ȳ).

By induction, {(u, w̄) ∈ Un | α(u, w̄)} is generated by elements of M under some
composition Γ of Gödel operations. Thus M |= α(u, w̄) iff Γ(U, W1, . . . , Wn) for
some U, Wi ∈ M . It follows that, for all w̄ ∈ Xn,

M |= (∃u)α(u, w̄) ↔ (∃u ∈ U)M |= α(u, w̄)
↔ (∃u ∈ U)((u, w̄) ∈ Γ(U, W̄ ))
↔ w̄ ∈ (Xn ∩ domr(Γ(U, W̄ )))
↔ w̄ ∈ Z. 2
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By induction, {(u, w̄) ∈ Un | α(u, w̄)} is generated by elements of M under some
composition Γ of Gödel operations. Thus M |= α(u, w̄) iff Γ(U, W1, . . . , Wn) for
some U, Wi ∈ M . It follows that, for all w̄ ∈ Xn,

M |= (∃u)α(u, w̄) ↔ (∃u ∈ U)M |= α(u, w̄)
↔ (∃u ∈ U)((u, w̄) ∈ Γ(U, W̄ ))
↔ w̄ ∈ (Xn ∩ domr(Γ(U, W̄ )))
↔ w̄ ∈ Z. 2

Verifying the Axiom of Comprehension 11 / 11



Parameter-free continuation, Existential Quantifier, Part 2

We want to construct Z = {ȳ ∈ Xn | (∃x)α(x, ȳ)}.
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Since M is almost universal, we may find U ⊇ T such that U ∈ M and
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By induction, {(u, w̄) ∈ Un | α(u, w̄)} is generated by elements of M under some
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