Remarks about $cf(\kappa^{card})$

$\overline{\mathrm{cf}(\kappa)}$ without ordinals

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals,

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

Let κ be an infinite cardinal.

(1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

- (1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)
- (2) (Successor versus limit κ)

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

- (1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)
- (2) (Successor versus limit κ)
 - (a) If $\kappa = \aleph_{\alpha+1}$ is a successor cardinal, then $cf(\kappa) = \kappa$. (Successor cardinals are regular.)

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

- (1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)
- (2) (Successor versus limit κ)
 - (a) If $\kappa = \aleph_{\alpha+1}$ is a successor cardinal, then $cf(\kappa) = \kappa$. (Successor cardinals are regular.)
 - (b) If $\kappa = \aleph_{\lambda}$ is a limit cardinal, then $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i < \chi} \nearrow \kappa$. (I.e., $\kappa = \bigcup_{i < \chi} \lambda_i$.)

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

- (1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)
- (2) (Successor versus limit κ)
 - (a) If $\kappa = \aleph_{\alpha+1}$ is a successor cardinal, then $cf(\kappa) = \kappa$. (Successor cardinals are regular.)
 - (b) If $\kappa = \aleph_{\lambda}$ is a limit cardinal, then $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i < \chi} \nearrow \kappa$. (I.e., $\kappa = \bigcup_{i < \chi} \lambda_i$.)

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

Let κ be an infinite cardinal.

- (1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)
- (2) (Successor versus limit κ)
 - (a) If $\kappa = \aleph_{\alpha+1}$ is a successor cardinal, then $cf(\kappa) = \kappa$. (Successor cardinals are regular.)
 - (b) If $\kappa = \aleph_{\lambda}$ is a limit cardinal, then $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$. (I.e., $\kappa = \bigcup_{i<\chi} \lambda_i$.)

Discussion.

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

Let κ be an infinite cardinal.

- (1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)
- (2) (Successor versus limit κ)
 - (a) If $\kappa = \aleph_{\alpha+1}$ is a successor cardinal, then $cf(\kappa) = \kappa$. (Successor cardinals are regular.)
 - (b) If $\kappa = \aleph_{\lambda}$ is a limit cardinal, then $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$. (I.e., $\kappa = \bigcup_{i<\chi} \lambda_i$.)

Discussion. $\kappa = \aleph_1$.

Q: Can we speak about the cofinality of cardinals without mentioning ordinals?

A: The DEFINITION of $cf(\kappa)$ involves ordinals, but we can find equivalent conditions that involve cardinals only.

Theorem

Let κ be an infinite cardinal.

- (1) (Sums) $cf(\kappa)$ is the least cardinal χ for which it is possible to express κ as a sum of χ cardinals, all smaller than κ . ($\kappa = \sum_{i < \chi} \lambda_i$, each $\lambda_i < \kappa$.)
- (2) (Successor versus limit κ)
 - (a) If $\kappa = \aleph_{\alpha+1}$ is a successor cardinal, then $cf(\kappa) = \kappa$. (Successor cardinals are regular.)
 - (b) If $\kappa = \aleph_{\lambda}$ is a limit cardinal, then $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$. (I.e., $\kappa = \bigcup_{i<\chi} \lambda_i$.)

Discussion. $\kappa = \aleph_1$. $\lambda_i \in \{0, 1, 2, \dots, \aleph_0\}$.

Assumptions:

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion:

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Choose a χ -sequence of ordinals $(\alpha_i)_{i<\chi}\nearrow\kappa$ such that $\kappa=\bigcup_{i<\chi}\alpha_i$.

 \uparrow

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i|$$

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i| \le \sum_{i < \chi} |\alpha_i|$$

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i| \le \sum_{i < \chi} |\alpha_i| = \sum_{i < \chi} \lambda_i$$

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i| \le \sum_{i < \chi} |\alpha_i| = \sum_{i < \chi} \lambda_i \le \sum_{i < \chi} \kappa$$

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i| \le \sum_{i < \chi} |\alpha_i| = \sum_{i < \chi} \lambda_i \le \sum_{i < \chi} \kappa \le \kappa \cdot \mathrm{cf}(\kappa)$$

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i| \le \sum_{i < \chi} |\alpha_i| = \sum_{i < \chi} \lambda_i \le \sum_{i < \chi} \kappa \le \kappa \cdot \mathrm{cf}(\kappa) = \kappa$$

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Choose a χ -sequence of ordinals $(\alpha_i)_{i<\chi}\nearrow\kappa$ such that $\kappa=\bigcup_{i<\chi}\alpha_i$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i| \le \sum_{i < \chi} |\alpha_i| = \sum_{i < \chi} \lambda_i \le \sum_{i < \chi} \kappa \le \kappa \cdot \mathrm{cf}(\kappa) = \kappa$$

where $\lambda_i := |\alpha_i|$.

Assumptions: $\chi = \operatorname{cf}(\kappa)$.

Conclusion: $\kappa = \sum_{i < \chi} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Choose a χ -sequence of ordinals $(\alpha_i)_{i<\chi}\nearrow\kappa$ such that $\kappa=\bigcup_{i<\chi}\alpha_i$.

$$\kappa = |\bigcup_{i < \chi} \alpha_i| \le \sum_{i < \chi} |\alpha_i| = \sum_{i < \chi} \lambda_i \le \sum_{i < \chi} \kappa \le \kappa \cdot \mathrm{cf}(\kappa) = \kappa$$

where $\lambda_i := |\alpha_i|$.

Assumptions:

Assumptions: $v < \operatorname{cf}(\kappa)$

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion:

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assume not.

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assume not. (I.e., it IS possible.)

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assume not. (I.e., it IS possible.) The set $\{\lambda_i \mid i < v\} \cup \{v\}$ is a subset of κ that cannot be cofinal in κ .

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assume not. (I.e., it IS possible.) The set $\{\lambda_i \mid i < v\} \cup \{v\}$ is a subset of κ that cannot be cofinal in κ . There must be an ordinal $\alpha < \kappa$ such that $v < \alpha$ and $\lambda_i < \alpha$ for all i < v.

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assume not. (I.e., it IS possible.) The set $\{\lambda_i \mid i < v\} \cup \{v\}$ is a subset of κ that cannot be cofinal in κ . There must be an ordinal $\alpha < \kappa$ such that $v < \alpha$ and $\lambda_i < \alpha$ for all i < v. We must have $v \le |\alpha| \le \alpha < \kappa$ and $\lambda_i \le |\alpha| < \kappa$ for all i < v. Thus,

K

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = \sum_{i < v} \lambda_i$$

Assumptions: $v < cf(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = \sum_{i < v} \lambda_i \le |\alpha| \cdot v$$

Assumptions: $v < cf(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = \sum_{i < v} \lambda_i \le |\alpha| \cdot v \le |\alpha|^2$$

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = \sum_{i < v} \lambda_i \le |\alpha| \cdot v \le |\alpha|^2 = |\alpha|$$

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

$$\kappa = \sum_{i < v} \lambda_i \le |\alpha| \cdot v \le |\alpha|^2 = |\alpha| \leqslant \kappa,$$

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assume not. (I.e., it IS possible.) The set $\{\lambda_i \mid i < v\} \cup \{v\}$ is a subset of κ that cannot be cofinal in κ . There must be an ordinal $\alpha < \kappa$ such that $v < \alpha$ and $\lambda_i < \alpha$ for all i < v. We must have $v \le |\alpha| \le \alpha < \kappa$ and $\lambda_i \le |\alpha| < \kappa$ for all i < v. Thus,

$$\underset{\uparrow}{\kappa} = \sum_{i < v} \lambda_i \leq |\alpha| \cdot v \leq |\alpha|^2 = |\alpha| \leqslant \underset{\uparrow}{\kappa},$$

a contradiction.

Assumptions: $v < \operatorname{cf}(\kappa) \ (\leq \kappa)$.

Conclusion: It is not possible to express κ as $\kappa = \sum_{i < v} \lambda_i$, each cardinal $\lambda_i < \kappa$.

Assume not. (I.e., it IS possible.) The set $\{\lambda_i \mid i < v\} \cup \{v\}$ is a subset of κ that cannot be cofinal in κ . There must be an ordinal $\alpha < \kappa$ such that $v < \alpha$ and $\lambda_i < \alpha$ for all i < v. We must have $v \le |\alpha| \le \alpha < \kappa$ and $\lambda_i \le |\alpha| < \kappa$ for all i < v. Thus,

$$\kappa = \sum_{i < v} \lambda_i \le |\alpha| \cdot v \le |\alpha|^2 = |\alpha| \leqslant \kappa,$$

a contradiction.

Assumption:

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion:

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular.

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < cf(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal.

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal.

Necessarily, $\lambda_i \leq \aleph_{\alpha}$.

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal.

Necessarily, $\lambda_i \leq \aleph_{\alpha}$. Hence

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

$$\aleph_{\alpha+1}$$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_\alpha \cdot \operatorname{cf}(\aleph_{\alpha+1})$$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_\alpha \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2$$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_\alpha \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2 = \aleph_{\alpha+1}.$$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal. Necessarily, $\lambda_i \leq \aleph_{\alpha}$. Hence

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_\alpha \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2 = \aleph_{\alpha+1}.$$

Hence κ

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal. Necessarily, $\lambda_i \leq \aleph_{\alpha}$. Hence

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_\alpha \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2 = \aleph_{\alpha+1}.$$

Hence $\kappa = \aleph_{\alpha+1}$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal. Necessarily, $\lambda_i \leq \aleph_{\alpha}$. Hence

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_{\alpha} \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2 = \aleph_{\alpha+1}.$$

Hence $\kappa = \aleph_{\alpha+1} = \aleph_{\alpha} \cdot \operatorname{cf}(\aleph_{\alpha+1})$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal. Necessarily, $\lambda_i \leq \aleph_{\alpha}$. Hence

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_{\alpha} \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2 = \aleph_{\alpha+1}.$$

Hence $\kappa = \aleph_{\alpha+1} = \aleph_{\alpha} \cdot \mathrm{cf}(\aleph_{\alpha+1}) = \max(\aleph_{\alpha}, \mathrm{cf}(\aleph_{\alpha+1}))$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal. Necessarily, $\lambda_i \leq \aleph_{\alpha}$. Hence

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_{\alpha} \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2 = \aleph_{\alpha+1}.$$

Hence $\kappa = \aleph_{\alpha+1} = \aleph_{\alpha} \cdot \mathrm{cf}(\aleph_{\alpha+1}) = \max(\aleph_{\alpha}, \mathrm{cf}(\aleph_{\alpha+1})) = \mathrm{cf}(\aleph_{\alpha+1}).$

Assumption: $\kappa = \aleph_{\alpha+1}$ is an infinite successor cardinal.

Conclusion: κ is regular. $(cf(\kappa) = \kappa)$

Assume that $\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i$ where each $\lambda_i < \aleph_{\alpha+1}$ is a cardinal. Necessarily, $\lambda_i \leq \aleph_{\alpha}$. Hence

$$\aleph_{\alpha+1} = \sum_{i < \operatorname{cf}(\aleph_{\alpha+1})} \lambda_i \leq \aleph_{\alpha} \cdot \operatorname{cf}(\aleph_{\alpha+1}) \leq \aleph_{\alpha+1}^2 = \aleph_{\alpha+1}.$$

Hence
$$\kappa = \aleph_{\alpha+1} = \aleph_{\alpha} \cdot \mathrm{cf}(\aleph_{\alpha+1}) = \max(\aleph_{\alpha}, \mathrm{cf}(\aleph_{\alpha+1})) = \mathrm{cf}(\aleph_{\alpha+1}).$$

Remarks about $cf(\kappa^{card})$

Assumption:

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion:

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$.

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi}\nearrow\kappa$. (I.e., $\lambda_0<\lambda_1<\lambda_2<\dots<\kappa$ and $\kappa=\bigcup_{i<\gamma}\lambda_i$.)

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi}\nearrow\kappa$. (I.e., $\lambda_0<\lambda_1<\lambda_2<\dots<\kappa$ and $\kappa=\bigcup_{i<\chi}\lambda_i$.)

Choose a sequence of ordinals $(\alpha_i)_{i < cf(\kappa)} \nearrow \kappa$.

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: cf(κ) is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi}\nearrow\kappa$. (I.e., $\lambda_0<\lambda_1<\lambda_2<\dots<\kappa$ and $\kappa=\bigcup_{i<\chi}\lambda_i$.)

Choose a sequence of ordinals $(\alpha_i)_{i < \operatorname{cf}(\kappa)} \nearrow \kappa$. Since κ is a limit cardinal, there exists a strictly increasing sequence $(\mu_i)_{i < \nu}$ of <u>cardinals</u> $\mu_i < \kappa$ whose union is κ .

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: cf(κ) is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$. (I.e., $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \kappa$ and $\kappa = \bigcup_{i<\chi} \lambda_i$.)

Choose a sequence of ordinals $(\alpha_i)_{i < \operatorname{cf}(\kappa)} \nearrow \kappa$. Since κ is a limit cardinal, there exists a strictly increasing sequence $(\mu_i)_{i < \nu}$ of <u>cardinals</u> $\mu_i < \kappa$ whose union is κ . Recursively define a function $F : \operatorname{cf}(\kappa) \to M := \{\mu_i \mid i < \nu\}$ as follows:

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: cf(κ) is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi}\nearrow\kappa$. (I.e., $\lambda_0<\lambda_1<\lambda_2<\dots<\kappa$ and $\kappa=\bigcup_{i<\chi}\lambda_i$.)

Choose a sequence of ordinals $(\alpha_i)_{i < \operatorname{cf}(\kappa)} \nearrow \kappa$. Since κ is a limit cardinal, there exists a strictly increasing sequence $(\mu_i)_{i < \nu}$ of <u>cardinals</u> $\mu_i < \kappa$ whose union is κ . Recursively define a function $F : \operatorname{cf}(\kappa) \to M := \{\mu_i \mid i < \nu\}$ as follows:

F(0) = least element of M above α_0 ,

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: cf(κ) is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$. (I.e., $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \kappa$ and $\kappa = \bigcup_{i<\chi} \lambda_i$.)

Choose a sequence of ordinals $(\alpha_i)_{i < \operatorname{cf}(\kappa)} \nearrow \kappa$. Since κ is a limit cardinal, there exists a strictly increasing sequence $(\mu_i)_{i < \nu}$ of <u>cardinals</u> $\mu_i < \kappa$ whose union is κ . Recursively define a function $F : \operatorname{cf}(\kappa) \to M := \{\mu_i \mid i < \nu\}$ as follows:

- F(0) = least element of M above α_0 ,
- $F(\beta)$ = least element of M above α_{β} and $\operatorname{im}(F|_{\beta})$.

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: $cf(\kappa)$ is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$. (I.e., $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \kappa$ and $\kappa = \bigcup_{i<\gamma} \lambda_i$.)

Choose a sequence of ordinals $(\alpha_i)_{i < \operatorname{cf}(\kappa)} \nearrow \kappa$. Since κ is a limit cardinal, there exists a strictly increasing sequence $(\mu_i)_{i < \nu}$ of <u>cardinals</u> $\mu_i < \kappa$ whose union is κ . Recursively define a function $F : \operatorname{cf}(\kappa) \to M := \{\mu_i \mid i < \nu\}$ as follows:

- F(0) = least element of M above α_0 , $F(\beta)$ = least element of M above α_β and $\operatorname{im}(F|_\beta)$.
- The image of F is a strictly increasing, cofinal, $(\leq \operatorname{cf}(\kappa))$ -sequence of cardinals in κ .

Assumption: $\kappa = \aleph_{\lambda}$ is an infinite limit cardinal.

Conclusion: cf(κ) is the least cardinal χ for which there is a strictly increasing χ -sequence of <u>cardinals</u>, $(\lambda_i)_{i<\chi} \nearrow \kappa$. (I.e., $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \kappa$ and $\kappa = \bigcup_{i<\chi} \lambda_i$.)

Choose a sequence of ordinals $(\alpha_i)_{i < \operatorname{cf}(\kappa)} \nearrow \kappa$. Since κ is a limit cardinal, there exists a strictly increasing sequence $(\mu_i)_{i < \nu}$ of <u>cardinals</u> $\mu_i < \kappa$ whose union is κ . Recursively define a function $F : \operatorname{cf}(\kappa) \to M := \{\mu_i \mid i < \nu\}$ as follows:

- F(0) = least element of M above α_0 ,
- $F(\beta)$ = least element of M above α_{β} and $\operatorname{im}(F|_{\beta})$.

The image of F is a strictly increasing, cofinal, $(\leq cf(\kappa))$ -sequence of cardinals in κ . \Box .

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal.

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence.

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i.

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i. This implies that

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i. This implies that

$$\kappa = \bigcup_{i < \chi} \lambda_i \subseteq |\kappa| \subseteq \kappa,$$

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i. This implies that

$$\kappa = \bigcup_{i < \gamma} \lambda_i \subseteq |\kappa| \subseteq \kappa,$$

so $\kappa = |\kappa|$ is a cardinal.

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i. This implies that

$$\kappa = \bigcup_{i < \gamma} \lambda_i \subseteq |\kappa| \subseteq \kappa,$$

so $\kappa = |\kappa|$ is a cardinal.

Since κ is the union of a χ -sequence of cardinals, $cf(\kappa) \leq \chi$.

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i. This implies that

$$\kappa = \bigcup_{i < \chi} \lambda_i \subseteq |\kappa| \subseteq \kappa,$$

so $\kappa = |\kappa|$ is a cardinal.

Since κ is the union of a χ -sequence of cardinals, $\mathrm{cf}(\kappa) \leq \chi$. We cannot have $\mathrm{cf}(\kappa) < \chi$ or (by copying the proof on the previous slide) we could find a $\mathrm{cf}(\kappa)$ -subsequence $(\lambda_{i_j})_{j < \chi'}$ such that $\kappa = \bigcup_{j < \chi'} \lambda_{i_j}$.

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i. This implies that

$$\kappa = \bigcup_{i < \chi} \lambda_i \subseteq |\kappa| \subseteq \kappa,$$

so $\kappa = |\kappa|$ is a cardinal.

Since κ is the union of a χ -sequence of cardinals, $\operatorname{cf}(\kappa) \leq \chi$. We cannot have $\operatorname{cf}(\kappa) < \chi$ or (by copying the proof on the previous slide) we could find a $\operatorname{cf}(\kappa)$ -subsequence $(\lambda_{i_j})_{j < \chi'}$ such that $\kappa = \bigcup_{j < \chi'} \lambda_{i_j}$. Now $(i_j)_{j < \chi'}$ is a cofinal, $\operatorname{cf}(\kappa)$ -subsequence of χ , contradicting the regularity of χ .

Theorem

Let χ be an infinite, regular cardinal. If $\lambda_0 < \lambda_1 < \cdots$ is a strictly increasing χ -sequence of cardinals, then $\kappa := \bigcup_{i < \chi} \lambda_i$ is a cardinal of cofinality χ .

First we claim that the union of any strictly increasing sequence $(\lambda)_{i<\alpha}$ of cardinals is a cardinal. This is clear if α is a successor ordinal, since then the union is the last cardinal in the sequence. If α is a limit ordinal, then for any $i<\alpha$ we have $\lambda_i\subseteq\bigcup_{i<\alpha}\lambda_i=\kappa$, so $\lambda_i\subseteq|\kappa|$ for all i. This implies that

$$\kappa = \bigcup_{i < \chi} \lambda_i \subseteq |\kappa| \subseteq \kappa,$$

so $\kappa = |\kappa|$ is a cardinal.

Since κ is the union of a χ -sequence of cardinals, $\operatorname{cf}(\kappa) \leq \chi$. We cannot have $\operatorname{cf}(\kappa) < \chi$ or (by copying the proof on the previous slide) we could find a $\operatorname{cf}(\kappa)$ -subsequence $(\lambda_{i_j})_{j < \chi'}$ such that $\kappa = \bigcup_{j < \chi'} \lambda_{i_j}$. Now $(i_j)_{j < \chi'}$ is a cofinal, $\operatorname{cf}(\kappa)$ -subsequence of χ , contradicting the regularity of χ .

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:]

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal.

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal. If $\nu < \kappa$,

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal. If $\nu < \kappa$, then $\nu < \mu^{\{\lambda,+\}^k}$ for some k,

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal. If $\nu < \kappa$, then $\nu < \mu^{\{\lambda,+\}^k}$ for some k, so $\nu^{\lambda} < \mu^{\{\lambda,+\}^{k+1}} < \kappa$.

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal. If $\nu < \kappa$, then $\nu < \mu^{\{\lambda,+\}^k}$ for some k, so $\nu^{\lambda} < \mu^{\{\lambda,+\}^{k+1}} < \kappa$.

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal. If $\nu < \kappa$, then $\nu < \mu^{\{\lambda,+\}^k}$ for some k, so $\nu^\lambda < \mu^{\{\lambda,+\}^{k+1}} < \kappa$. \square

Exercise.

Theorem

Let λ be an infinite cardinal. Given any cardinal μ there is a least λ -unreachable cardinal κ strictly above μ , and it is the union of (the even terms of) the sequence

$$\mu \le \mu^{\lambda} < (\mu^{\lambda})^{+} \le ((\mu^{\lambda})^{+})^{\lambda} < (((\mu^{\lambda})^{+})^{\lambda})^{+} \le \cdots$$

[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal. If $\nu < \kappa$, then $\nu < \mu^{\{\lambda,+\}^k}$ for some k, so $\nu^\lambda < \mu^{\{\lambda,+\}^{k+1}} < \kappa$. \square

Exercise. Given $\kappa < \lambda$, show how to find a λ -unreachable cardinal of cofinality κ^+ .