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Constructing cardinals of a given cofinality

Let x be an infinite, regular cardinal. If \g < A1 < - - - is a strictly increasing
x-sequence of cardinals, then k := ;. \i is a cardinal of cofinality x.
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Let \ be an infinite cardinal. Given any cardinal p there is a least
A-unreachable cardinal k strictly above p, and it is the union of (the even
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Constructing A-unreachable cardinals

Let \ be an infinite cardinal. Given any cardinal p there is a least
A-unreachable cardinal k strictly above p, and it is the union of (the even
terms of) the sequence

p<ph < (MA)+

VAN
N
/N
=
>
N——
Jr
N~
>
A
/o~
I/
N
=
>
N—
+
"
>
~
AN

[Idea:]
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[Idea:] The union of a strictly increasing chain of cardinals is a limit cardinal.
k k
If v < Kk, then v < ptMH" for some k, so v < bt} <kl O

Exercise. Given k < )\, show how to find a A-unreachable cardinal of
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