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definitions are:

Addition
m+0 =m I0)
m+ S(n) =8(m+n) (RR)
Multiplication
m-0 =0 (IC)
m-S(n) =(m-n)+m (RR)
Exponentiation
m =1 ac

mSM = (m™).m (RR)
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The Laws of 0 and Successor

The element 0 € N and the unary ( = 1-place) operation S: N — N were
defined long ago, without the use of recursion, namely 0 := () and
S(xz) = 2 U {z}. The Laws of Successor are:
(a) 0 is not a successor. Every nonzero natural number is a successor.
(b) Successor is injective. (S(m) = S(n) implies m = n.)

We proved these statements already.
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This proof does not require induction.

n+1 =n+.5(0) (Defn of 1)
=S(n+0) ((RR),+)
= S(n) (IC),+) ©
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@ A statement of what is to be proved. This should be formulated so that it
is clear that the statement is equivalent to a sequence of statements that
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@ A proof of the initial statement, Sy. This part of the argument is called
the “Basis of Induction”, or the “Base Case” of the proof.

@ A proof that the implication Sy — Sy 1 holds. This means: you may
assume that the k-th statement is true (this assumption is called the
“Inductive Hypothesis™) and use this information to prove that the
(k 4 1)-st statement is true. This part of the proof showing that the
implication Sy — Si1 holds is called the “Inductive Step”.

If both steps are accomplished, you have shown that .S, is true for all n.
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should prove properties of addition by induction on the last variable, k. Thus, for
fixed values of m and n, the k-th statement to be proved is
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(Base Case: k = 0)

m+ (n+0) m+n ((1IC),

_|_
(m+n)+0 (IC),+) O

(Inductive Step: Assume true for k, prove true for S(k))
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should prove properties of addition by induction on the last variable, k. Thus, for
fixed values of m and n, the k-th statement to be proved is

m+ (n+k)=(m+n)+k.

(Base Case: k = 0)

m+(n+0) =m+n (IC), +)
=(m+n)+0 ((IC),+) O
(Inductive Step: Assume true for k, prove true for S(k))
m+(n+Sk)) =m+Sh+k) ((RR),+)
=S(m+ (n+k)) ((RR),+)

=S((m+n)+k) (IH)
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The fact that m + 0 = m is part of the definition of addition, so we only need
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(Inductive Step: Assume true for m, prove true for S(m))
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The fact that m + 0 = m is part of the definition of addition, so we only need
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The fact that m + 0 = m is part of the definition of addition, so we only need
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(Inductive Step: Assume true for m, prove true for S(m))
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UnitLaw forO: m+0=04+m=m

The fact that m + 0 = m is part of the definition of addition, so we only need

to prove that . We argue this by induction on m.

(Base Case: m = 0)

0+0 =0 (IC),+) O

(Inductive Step: Assume true for m, prove true for S(m))
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UnitLaw forO: m+0=04+m=m

The fact that m + 0 = m is part of the definition of addition, so we only need

to prove that . We argue this by induction on m.

(Base Case: m = 0)

0+0 =0 (IC),+) O

(Inductive Step: Assume true for m, prove true for S(m))

0+S(m) =S(0+m) (RR),+)

This proves that 0 + m = m for all m € N.
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Commutative Law: m4+n=n+m

We argue this by induction on n.

(Base Case: n = 0)

m+0 =0+m (Part (c), +)
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Commutative Law: m4+n=n+m

We argue this by induction on n.

(Base Case: n = 0)

m+0 =0+m (Part (c), +)

At this point we should expect to prove the Inductive Step.
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Commutative Law: m+n=n-+m

We argue this by induction on n.

(Base Case: n = 0)
m+0 =0+m (Part (c), +)
At this point we should expect to prove the Inductive Step. However, an

attempt to do this reveals that it would help if we already knew that the
“n =1 case” of the Commutative Law was true.
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Commutative Law: m+n=n-+m

We argue this by induction on n.

(Base Case: n = 0)

m+0 =0+m (Part (c), +)

At this point we should expect to prove the Inductive Step. However, an
attempt to do this reveals that it would help if we already knew that the
“n = 1 case” of the Commutative Law was true. That is, it would help to
know that “m + 1 = 1 4+ m” holds for all m.
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Commutative Law: m+n=n-+m

We argue this by induction on n.

(Base Case: n = 0)

m+0 =0+m (Part (c), +)

At this point we should expect to prove the Inductive Step. However, an
attempt to do this reveals that it would help if we already knew that the
“n = 1 case” of the Commutative Law was true. That is, it would help to
know that “m + 1 = 1 4+ m” holds for all m. Let’s separate this out as a
Lemma, which we will prove by induction.
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Proving the Lemma

Lemma. m + 1 = 1 + m holds for all m € N.
Proof of Lemma.
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(Base Case: m = 0)
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(Base Case: m = 0)
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Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)

0+1 =0+ S5(0)
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)

0+1 =0+5(0) (Defn of 1)
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)

0+1 =0+5(0) (Defn of 1)
=5(0+0)
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Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)

0+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
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Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)
04+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
= 5(0)
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= 5(0) (IC), +)
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)
0+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
= 5(0) (IC), +)
=1
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)

0+1 =0+ 5(0) (
= S(0+0) ((RR), +)
= f(O) E
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)

0+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
= 5(0) ((IC),+)
=1 (Defn of 1)

=140
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.
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=1 (Defn of 1)
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)
04+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
=5(0) ((IC), +)
=1 (Defn of 1)
=1+0 (IC),+) O

(Inductive Step:
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)
04+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
=5(0) ((IC), +)
=1 (Defn of 1)
=1+0 (IC),+) O

(Inductive Step: Assume m + 1 = 1 4+ m for some m, prove S(m) + 1 =1+ S(m))

1+ 5(m)
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Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)
04+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
=5(0) ((IC), +)
=1 (Defn of 1)
=1+0 (IC),+) O

(Inductive Step: Assume m + 1 = 1 4+ m for some m, prove S(m) + 1 =1+ S(m))

1+8(m) = 8(1+m)
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04+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
=5(0) ((IC), +)
=1 (Defn of 1)
=1+0 (IC),+) O

(Inductive Step: Assume m + 1 = 1 4+ m for some m, prove S(m) + 1 =1+ S(m))
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)
04+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
=5(0) ((IC), +)
=1 (Defn of 1)
=1+0 (IC),+) O

(Inductive Step: Assume m + 1 = 1 4+ m for some m, prove S(m) + 1 =1+ S(m))

1+8(m) =58(1+m) ((RR),+)
=S(m+1) (IH)
= S(S(m)) (Part (a), S)
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Proving the Lemma

Lemma. m + 1 = 1 4+ m holds for all m € N.

Proof of Lemma.
(Base Case: m = 0)

0+1 =0+5(0) (Defn of 1)
=5(0+0) ((RR),+)
= 5(0) (IC), +)
=1 (Defn of 1)
=1+0 (IC),+) O

14+S(m) =S(1+m) ((RR),+)
=S(m+1) (IH)
= S(S(m)) (Part (a), S)
=5S(m)+1
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m+ S(n) = S(n)+m.)
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m+S(n) =S(m+n) ((RR),+)
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+ S(n)

S(m+n) (RR),+)
S(n+m)
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+S(n) =S(m+n) (RR), +)
S(n+m

( ) (TH)
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)
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= S(n+m) (IH)
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+S(n) =S(m+n) ((RR),+)
=S(n+m) (1H)
=n+ S(m) ((RR),+)
=n+ (m+1) (Part (a), S)
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+S(n) = S(m+n) (RR), +)
=S(n+m) (1H)
=n+ S(m) (RR), +)
=n+ (m+1) (Part (a), S)

=n+(14+m)
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+S(n) =S(m+n) ((RR),+)
= S(n+m) (IH)
=n+ S(m) (RR), +)
=n+ (m+1) (Part (a), S)
=n+(1+m) (Lemma)
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)
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=S(n+m) (IH)
=n+5(m) ((RR), +)
=n+(m+1) (Part (a), S)
=n+(1+m) (Lemma)

=Mn+1)+m
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+5(n) =S(m+n) ((RR), +)
= S(n+m) (IH)
=n+5(m) ((RR), +)
=n+(m+1) (Part (a), S)
=n+(1+m) (Lemma)

=Mn+1)+m (Assoc. Law, +)

=S(n)+m (Part (a), )

Rules of Arithmetic on N



Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+5(n) =S(m+n) ((RR), +)
= S(n+m) (IH)
=n+5(m) ((RR), +)
=n+(m+1) (Part (a), S)
=n+(1+m) (Lemma)

=Mn+1)+m (Assoc. Law, +)

=S(n)+m (Part (a), 5) O
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Completing the proof of the Commutative Law

(Inductive Step: assume that m 4+ n = n 4+ m holds and derive that
m+ S(n) = S(n)+m.)

m+5(n) =S(m+n) ((RR), +)
= S(n+m) (IH)
=n+5(m) ((RR), +)
=n+(m+1) (Part (a), S)
=n+(1+m) (Lemma)
=Mn+1)+m (Assoc. Law, +)
=S(n)+m (Part (a), 5) O

This proves that m +n =n + m forall m,n € N.

Rules of Arithmetic on N



+-Irreducibility of 0: m + n = 0 implies m = n = 0.
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+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.

Rules of Arithmetic on N



+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.

Proof.
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+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.

Proof. If n # 0, then n = S(k) by Part (a) of the Laws of Successor.
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+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.
Proof. If n # 0, then n = S(k) by Part (a) of the Laws of Successor. Then
O=m+n=m+Sk)=Sm+k),
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+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.

Proof. If n # 0, then n = S(k) by Part (a) of the Laws of Successor. Then
0=m+n=m+ S(k) = S(m+ k), contradicting that 0 is not a successor.
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+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.

Proof. If n # 0, then n = S(k) by Part (a) of the Laws of Successor. Then
0=m+n=m+ S(k) = S(m+ k), contradicting that 0 is not a successor.
Hence 0 = m + n forces n = 0.
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+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.

Proof. If n # 0, then n = S(k) by Part (a) of the Laws of Successor. Then
0=m+n=m+ S(k) = S(m+ k), contradicting that 0 is not a successor.
Hence 0 = m +n forcesn = 0. Butnow0 =m+n=m+ 0 =m, so

m = 0 too. O
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Right Cancellation: m + k£ = n + k implies m = n.
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m-+0
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n-+0
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that
m + S(k) = n+ S(k) implies m = n.)
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that
m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k).
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that
m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have
S(m+k)=S(n+k).
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 (IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that

m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have

S(m + k) = S(n + k). But the successor function is injective, by Part (b) of
the Laws of Successor.
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 (IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that
m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have
S(m + k) = S(n + k). But the successor function is injective, by Part (b) of
the Laws of Successor. Thus, m + k = n + k.
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that

m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have

S(m + k) = S(n + k). But the successor function is injective, by Part (b) of

the Laws of Successor. Thus, m + k = n 4+ k. Now, by the inductive
hypothesis, we derive that m = n.
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that

m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have

S(m + k) = S(n + k). But the successor function is injective, by Part (b) of

the Laws of Successor. Thus, m + k = n 4+ k. Now, by the inductive
hypothesis, we derive that m = n. O
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that
m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have

S(m + k) = S(n + k). But the successor function is injective, by Part (b) of
the Laws of Successor. Thus, m + k = n 4+ k. Now, by the inductive
hypothesis, we derive that m = n. O

Since we have already proved the Commutative Law, the Left Cancellation
Law is also valid: k +m = k + n implies m = n.
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that
m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have

S(m + k) = S(n + k). But the successor function is injective, by Part (b) of
the Laws of Successor. Thus, m + k = n 4+ k. Now, by the inductive
hypothesis, we derive that m = n. O

Since we have already proved the Commutative Law, the Left Cancellation
Law is also valid: k +m = k + n implies m = n.
(Proof:
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Right Cancellation: m + k£ = n + k implies m = n.

(Base Case: k = 0)

m =m+0 ((IC), +)
=n+0 (assumption)
=n ((10)7 +)

(Inductive Step: Assume that m + k = n + k implies m = n. Prove that
m + S(k) = n+ S(k) implies m = n.)

Assume that m + S(k) = n + S(k). Then by ((RR), +) we have

S(m + k) = S(n + k). But the successor function is injective, by Part (b) of
the Laws of Successor. Thus, m + k = n 4+ k. Now, by the inductive
hypothesis, we derive that m = n. O

Since we have already proved the Commutative Law, the Left Cancellation
Law is also valid: k +m = k + n implies m = n.
(Proof: k +m = k 4+ n implies m + k = n + k implies m = n.)

Rules of Arithmetic on N



