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Recall

The operations x + y, x · y and xy on N are defined by recursion on the last
variable. (That is, these operations are defined by recursion on y.) These
definitions are:
Addition

m + 0 := m (IC)
m + S(n) := S(m + n) (RR)

Multiplication

m · 0 := 0 (IC)
m · S(n) := (m · n) + m (RR)

Exponentiation

m0 := 1 (IC)
mS(n) := (mn) · m (RR)
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The Laws of 0 and Successor

The element 0 ∈ N and the unary ( = 1-place) operation S : N → N were
defined long ago, without the use of recursion, namely 0 := ∅ and
S(x) = x ∪ {x}. The Laws of Successor are:

(a) 0 is not a successor. Every nonzero natural number is a successor.

(b) Successor is injective. (S(m) = S(n) implies m = n.)

We proved these statements already.
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The Laws of Addition

We will now practice using Induction to prove the Laws of Addition. These
Laws are:
Laws of addition.

(a) S(n) = n + 1, 1 + n = S(n)
(b) (Associative Law) m + (n + k) = (m + n) + k

(c) (Unit Law for 0) m + 0 = 0 + m = m

(d) (Commutative Law) m + n = n + m

(e) (Irreducibility of 0) m + n = 0 implies m = n = 0
(f) ((Right) Cancellation) m + k = n + k implies m = n
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Law (a): S(n) = n + 1

This proof does not require induction.

n + 1 = n + S(0) (Defn of 1)
= S(n + 0) ((RR), +)
= S(n) ((IC), +) 2
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Review of Induction

A proof by Induction involves the following items:

1 A statement of what is to be proved. This should be formulated so that it
is clear that the statement is equivalent to a sequence of statements that
are indexed by the natural numbers:

S0, S1, S2, S3, . . .

2 A proof of the initial statement, S0. This part of the argument is called
the “Basis of Induction”, or the “Base Case” of the proof.

3 A proof that the implication Sk → Sk+1 holds. This means: you may
assume that the k-th statement is true (this assumption is called the
“Inductive Hypothesis”) and use this information to prove that the
(k + 1)-st statement is true. This part of the proof showing that the
implication Sk → Sk+1 holds is called the “Inductive Step”.

If both steps are accomplished, you have shown that Sn is true for all n.
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The Associative Law: m + (n + k) = (m + n) + k

This will be proved by induction, but should we argue by induction on m? n? or k?

Experience shows that, since addition is defined by recursion on its last variable, we
should prove properties of addition by induction on the last variable, k. Thus, for
fixed values of m and n, the k-th statement to be proved is
m + (n + k) = (m + n) + k.

(Base Case: k = 0)

m + (n + 0) = m + n ((IC), +)
= (m + n) + 0 ((IC), +) 2

(Inductive Step: Assume true for k, prove true for S(k))

m + (n + S(k)) = m + S(n + k) ((RR), +)
= S(m + (n + k)) ((RR), +)
= S((m + n) + k) (IH)
= (m + n) + S(k) ((RR), +) 2
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fixed values of m and n, the k-th statement to be proved is
m + (n + k) = (m + n) + k.

(Base Case: k = 0)

m + (n + 0) = m + n ((IC), +)
= (m + n) + 0 ((IC), +) 2

(Inductive Step: Assume true for k, prove true for S(k))

m + (n + S(k)) = m + S(n + k) ((RR), +)
= S(m + (n + k)) ((RR), +)
= S((m + n) + k) (IH)
= (m + n) + S(k) ((RR), +)

2
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Unit Law for 0: m + 0 = 0 + m = m

The fact that m + 0 = m is part of the definition of addition, so we only need
to prove that 0 + m = m . We argue this by induction on m.

(Base Case: m = 0)

0 + 0 = 0 ((IC), +) 2

(Inductive Step: Assume true for m, prove true for S(m))

0 + S(m) = S(0 + m) ((RR), +)
= S(m) (IH) 2

This proves that 0 + m = m for all m ∈ N.
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Commutative Law: m + n = n + m

We argue this by induction on n.

(Base Case: n = 0)

m + 0 = 0 + m (Part (c), +)

At this point we should expect to prove the Inductive Step. However, an
attempt to do this reveals that it would help if we already knew that the
“n = 1 case” of the Commutative Law was true. That is, it would help to
know that “m + 1 = 1 + m” holds for all m. Let’s separate this out as a
Lemma, which we will prove by induction.
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Proving the Lemma

Lemma. m + 1 = 1 + m holds for all m ∈ N.

Proof of Lemma.
(Base Case: m = 0)

0 + 1 = 0 + S(0) (Defn of 1)
= S(0 + 0) ((RR), +)
= S(0) ((IC), +)
= 1 (Defn of 1)
= 1 + 0 ((IC), +) 2

(Inductive Step: Assume m + 1 = 1 + m for some m, prove S(m) + 1 = 1 + S(m))

1 + S(m) = S(1 + m) ((RR), +)
= S(m + 1) (IH)
= S(S(m)) (Part (a), S)
= S(m) + 1 (Part (a), S) 2
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Completing the proof of the Commutative Law

(Inductive Step: assume that m + n = n + m holds and derive that
m + S(n) = S(n) + m.)

m + S(n) = S(m + n) ((RR), +)
= S(n + m) (IH)
= n + S(m) ((RR), +)
= n + (m + 1) (Part (a), S)
= n + (1 + m) (Lemma)
= (n + 1) + m (Assoc. Law, +)
= S(n) + m (Part (a), S) 2

This proves that m + n = n + m for all m, n ∈ N.
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+-Irreducibility of 0: m + n = 0 implies m = n = 0.

We do not need induction to prove this.

Proof. If n ̸= 0, then n = S(k) by Part (a) of the Laws of Successor. Then
0 = m + n = m + S(k) = S(m + k), contradicting that 0 is not a successor.
Hence 0 = m + n forces n = 0. But now 0 = m + n = m + 0 = m, so
m = 0 too. 2
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Right Cancellation: m + k = n + k implies m = n.
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2
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(Proof: k + m = k + n implies m + k = n + k implies m = n.)
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