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The concept of absoluteness, NST Chapter 13

Let V be a model of ZF and let M ⊆ N be transitive classes in V . We are
concerned with the question: Does the meaning of a formula change as we
pass from M to N? For example, do “x ∈M y”, “x ∈N y”, and “x ∈V y”
mean the same thing for x, y ∈ M?
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Relativization

Let V be a model of ZF. Let M be a class in V . (Say, x ∈ M iff V |= µ(x).)
We assume that ⟨M ; ∈⟩ is an induced substructure of ⟨V ; ∈⟩. The
relativization φM of a formula φ to M is defined by recursion:

1 (x = y)M is (x = y).
2 (x ∈ y)M is (x ∈ y).
3 (¬α)M is ¬αM .
4 (α ∧ β)M is αM ∧ βM .
5 ((∀x)α)M is (∀x)(µ(x) → αM ).

Definition. Let M ⊆ N be classes in V . φ is absolute for M, N if

(∀x̄ ∈ M)(φM (x̄) ↔ φN (x̄)).

We say that φ is absolute for M if it is absolute for M, V .
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∆0-formulas

Definition. A ∆0-formula is one that involves only bounded quantification
(possibly no quantification at all). “Bounded quantification” means quantification of
the form (∀x ∈ y) or (∃x ∈ y), but does not include quantification of the form (∀x)
or (∃x).

Examples. The following class functions and relations can be defined by
∆0-formulas.

1 x ∈ y

2 x = y

3 x ⊆ y

4 {x, y}
5 {x}
6 (x, y)

1 x = ∅
2 x ∪ {x}
3 x = n (∈ ω)
4 x = ω

5 x is transitive

6 x is an ordinal

1 x is a limit ordinal

2 x ∪ y

3 x ∩ y

4 x × y

5 x is a binary relation

6 dom(x)

Exercises. Verify for A(1), A(3), A(4), B(1), B(2).
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Example solutions

Example A(1). “x ∈ y” is atomic, hence ∆0.

Example A(3). the relation “x ⊆ y” is expressible by the ∆0-formula

(∀z ∈ x)(z ∈ y)

Example B(5). the relation “x is transitive” is expressible by the ∆0-formula

(∀z ∈ x)((x ∈ y) → (z ∈ y))

Example B(6). the relation “x is an ordinal” is expressible by a ∆0-formula
that says “x is a transitive set of transitive sets”:

Transitive(x) ∧ (∀y ∈ x)Transitive(y)
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∆0-Absoluteness

Theorem. ∆0-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

1 Atomic formulas are absolute. ✓
2 If α and β are absolute, then ¬α and α ∧ β are absolute. ✓
3 If α is absolute, then (∀x ∈ y)α is absolute.

For the third item, we need to justify the claim that if

(∀xyz̄ ∈ M)(αM (x, y, z̄) ↔ α(x, y, z̄)),
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Facts about absoluteness

1 (Proposition 13.4 of NST) If M ⊆ N are class models and F is a class
function defined in both M and N by a formula that is absolute for
M, N , then F has the same meaning in M and N ( = computes the same
value in M as in N on inputs from M ).

2 (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
φ(x1, . . . , xn), F (x1, . . . , xn), and Gi(ȳ) are absolute, then so are
φ(G1, . . . , Gn) and F (G1, . . . , Gn).

3 (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

4 (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

1 ordinal arithmetic
2 rank(x)
3 tr.cl(x)

5 (Theorem 13.13, NST) If M is a transitive model of ZF, then
PM (x) = PV (x) ∩ M and V M

α = Vα ∩ M .
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φ(G1, . . . , Gn) and F (G1, . . . , Gn).

3 (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

4 (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

1 ordinal arithmetic
2 rank(x)
3 tr.cl(x)

5 (Theorem 13.13, NST) If M is a transitive model of ZF, then
PM (x) = PV (x) ∩ M and V M

α = Vα ∩ M .

Absoluteness 7 / 8



Facts about absoluteness

1 (Proposition 13.4 of NST) If M ⊆ N are class models and F is a class
function defined in both M and N by a formula that is absolute for
M, N , then F has the same meaning in M and N ( = computes the same
value in M as in N on inputs from M ).

2 (Theorem 13.7 of NST) Absoluteness is preserved by composition:

If
φ(x1, . . . , xn), F (x1, . . . , xn), and Gi(ȳ) are absolute, then so are
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φ(G1, . . . , Gn) and F (G1, . . . , Gn).

3 (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

4 (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

1 ordinal arithmetic
2 rank(x)
3 tr.cl(x)

5 (Theorem 13.13, NST) If M is a transitive model of ZF, then
PM (x) = PV (x) ∩ M and V M

α = Vα ∩ M .

Absoluteness 7 / 8



Facts about absoluteness

1 (Proposition 13.4 of NST) If M ⊆ N are class models and F is a class
function defined in both M and N by a formula that is absolute for
M, N , then F has the same meaning in M and N ( = computes the same
value in M as in N on inputs from M ).

2 (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
φ(x1, . . . , xn), F (x1, . . . , xn), and Gi(ȳ) are absolute, then so are
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Some properties that are not absolute for transitive models

1 (¬ AC) x is a nonempty partition that has no choice function.
2 x is amorphous.
3 x is Dedekind finite.
4 |x| = ℵ0.
5 x is a cardinal.
6 x is a regular cardinal.
7 x a strongly inaccessible cardinal. (i.e., x is a regular cardinal, and

|y| < |x| implies |P(y)| < |x|).
8 (GCH) For any infinite x and y, if |x| ≤ |y| ≤ |P(x)|, then |x| = |y| or

|y| = |P(x)|.
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