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Absoluteness



Ap-Absoluteness

Absoluteness 6/8



Ap-Absoluteness

Theorem.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof:

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

@ Atomic formulas are absolute. v/

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

@ Atomic formulas are absolute. v/

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v

@ If o and 3 are absolute, then -« and o A § are absolute.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v

@ If o and 3 are absolute, then -« and o A § are absolute.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If o and 3 are absolute, then -« and o A § are absolute.
@ If «v is absolute, then (Vz € y)a is absolute.

For the third item, we need to justify the claim that if

v

Absoluteness



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If o and 3 are absolute, then -« and o A § are absolute.
@ If «v is absolute, then (Vz € y)a is absolute.

For the third item, we need to justify the claim that if

v

(Vayz € M)(aM(x,y,E) < a(z,y, 2)),

Absoluteness



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.

For the third item, we need to justify the claim that if

(Vayz € M)(aM(x,y,E) < a(z,y, 2)),

then

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.

For the third item, we need to justify the claim that if

(Vayz € M)(aM(x,y,E) < a(z,y, 2)),
then
(Vo € M)((z €y) = oM(x,y,2))

(Vyz € M) 7
(Vz)((z € y) = a(z,y, 2)).

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.
For the third item, we need to justify the claim that if
(Veyz € M)(aM(z,y,2) < a(z,y, 2)),
then
(Vo € M)((z €y) = oM(x,y,2))
(Vyz € M)
(Vo)((z € y) = a(z,y, 2)).
ye M,x € Mand x € yisequivalent to x € y € M since M is transitive.

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.
For the third item, we need to justify the claim that if
(Veyz € M)(aM(z,y,2) < a(z,y, 2)),
then
(Vo € M)((z €y) = oM(x,y,2))
(Vyz € M)
(Vo)((z € y) = a(z,y, 2)).
y€ M,z € M and x € yisequivalentto x € y € M since M is transitive.v

Absoluteness 6/8



Ap-Absoluteness

Theorem. Aj-formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that
@ Atomic formulas are absolute. v
@ If « and [ are absolute, then —~« and a A § are absolute. v
@ If «v is absolute, then (Vz € y)a is absolute.

For the third item, we need to justify the claim that if

(Vayz € M)(aM(x,y,E) < a(z,y, 2)),

then
(Vo € M)((z €y) = oM(x,y,2))

(Vyz € M)
Vz)((z € y) = alz,y, 2)).
y€ M,z € M and x € yisequivalentto x € y € M since M is transitive.v
O

Absoluteness 6/8



Facts about absoluteness

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M,N,

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition:

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,2,), F(z1,...,2y), and G;(y) are absolute,

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
(p(Gl, e ,Gn) and F(Gl, e ,Gn)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
(p(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
(p(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
(p(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
(p(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
(p(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
@(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
@(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

@ ordinal arithmetic

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
@(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

@ ordinal arithmetic
@ rank(z)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
@(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:
@ ordinal arithmetic
@ rank(z)
o trcl(z)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
@(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

@ ordinal arithmetic
@ rank(z)
o trcl(z)

@ (Theorem 13.13, NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
value in M as in IV on inputs from M).

© (Theorem 13.7 of NST) Absoluteness is preserved by composition: If
o(x1,...,xn), F(z1,...,2y), and G;(y) are absolute, then so are
@(Gl, PN ,Gn) and F(Gl, PN ,Gn)

© (Theorem 13.11 of NST) A function defined by recursion in a transitive
class model M using absolute concepts will be absolute.

© (Theorem 13.12 of NST) In particular, the following are absolute for
transitive class models of ZF:

@ ordinal arithmetic
@ rank(z)
o trcl(z)

@ (Theorem 13.13, NST)

Absoluteness 7/8



Facts about absoluteness

@ (Proposition 13.4 of NST) If M C N are class models and F' is a class
function defined in both M and N by a formula that is absolute for
M, N, then F' has the same meaning in M and N ( = computes the same
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@ ordinal arithmetic
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Q@ (— AC) z is a nonempty partition that has no choice function.

© <z is amorphous.

© = is Dedekind finite.

Q ‘LL’| = No.

© z is acardinal.

@ =z is aregular cardinal.

@ 1 astrongly inaccessible cardinal. (i.e., x is a regular cardinal, and
[yl < le| implies [P(y)] < [x]).

© (GCH) For any infinite x and y, if |z| < |y| < |P(x)|, then |z| = |y| or
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