Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V.

Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question:

Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question: Does the meaning of a formula change as we pass from M to N?

Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question: Does the meaning of a formula change as we pass from M to N? For example, do " $x \in M$ ",

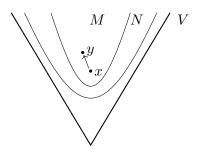
Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question: Does the meaning of a formula change as we pass from M to N? For example, do " $x \in M$ y", " $x \in M$ y",

Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question: Does the meaning of a formula change as we pass from M to N? For example, do " $x \in M$ ", " $x \in M$ ", " $x \in M$ ", and " $x \in M$ "

Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question: Does the meaning of a formula change as we pass from M to N? For example, do " $x \in M$ y", " $x \in M$ y", and " $x \in M$ y" mean the same thing for $x, y \in M$?

Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question: Does the meaning of a formula change as we pass from M to N? For example, do " $x \in M$ y", " $x \in M$ y", and " $x \in M$ y" mean the same thing for $x, y \in M$?

Let V be a model of ZF and let $M \subseteq N$ be transitive classes in V. We are concerned with the question: Does the meaning of a formula change as we pass from M to N? For example, do " $x \in M$ y", " $x \in M$ y", and " $x \in M$ y" mean the same thing for $x, y \in M$?



Let V be a model of ZF.

Let V be a model of ZF. Let M be a class in V.

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.)

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$.

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

• $(x = y)^M$ is (x = y).

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $2 (x \in y)^M \text{ is } (x \in y).$

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \bullet $(\neg \alpha)^M$ is $\neg \alpha^M$.

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \bullet $(\neg \alpha)^M$ is $\neg \alpha^M$.
- $((\forall x)\alpha)^M \text{ is } (\forall x)(\mu(x) \to \alpha^M).$

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \bullet $(\neg \alpha)^M$ is $\neg \alpha^M$.
- $((\forall x)\alpha)^M \text{ is } (\forall x)(\mu(x) \to \alpha^M).$

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \circ $(\neg \alpha)^M$ is $\neg \alpha^M$.
- $((\forall x)\alpha)^M$ is $(\forall x)(\mu(x) \to \alpha^M)$.

Definition.

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \bullet $(\neg \alpha)^M$ is $\neg \alpha^M$.
- $((\forall x)\alpha)^M$ is $(\forall x)(\mu(x) \to \alpha^M)$.

Definition. Let $M \subseteq N$ be classes in V.

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \circ $(\neg \alpha)^M$ is $\neg \alpha^M$.
- $((\forall x)\alpha)^M$ is $(\forall x)(\mu(x) \to \alpha^M)$.

Definition. Let $M \subseteq N$ be classes in V. φ is absolute for M, N if

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \bullet $(\neg \alpha)^M$ is $\neg \alpha^M$.
- $((\forall x)\alpha)^M \text{ is } (\forall x)(\mu(x) \to \alpha^M).$

Definition. Let $M \subseteq N$ be classes in V. φ is absolute for M, N if

$$(\forall \bar{x} \in M)(\varphi^M(\bar{x}) \leftrightarrow \varphi^N(\bar{x})).$$

Let V be a model of ZF. Let M be a class in V. (Say, $x \in M$ iff $V \models \mu(x)$.) We assume that $\langle M; \in \rangle$ is an induced substructure of $\langle V; \in \rangle$. The **relativization** φ^M of a formula φ to M is defined by recursion:

- **1** $(x = y)^M$ is (x = y).
- $(x \in y)^M$ is $(x \in y)$.
- \bullet $(\neg \alpha)^M$ is $\neg \alpha^M$.
- $((\forall x)\alpha)^M \text{ is } (\forall x)(\mu(x) \to \alpha^M).$

Definition. Let $M \subseteq N$ be classes in V. φ is absolute for M, N if

$$(\forall \bar{x} \in M)(\varphi^M(\bar{x}) \leftrightarrow \varphi^N(\bar{x})).$$

We say that φ is **absolute for** M if it is absolute for M, V.

Definition.

Definition. A Δ_0 -formula is one that involves only **bounded quantification**

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all).

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$,

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples.

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- $3 x \subseteq y$

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- \bullet $x \subseteq y$

Absoluteness 4.

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- $0 x \in y$
- 2 x = y
- \bullet $x \subseteq y$

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- \bullet $x \subseteq y$
- **3** {x}
- (x,y)

Absoluteness 4.

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- \bullet $x \subseteq y$
- **3** {x}
- \bullet (x,y)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- $2 x \cup \{x\}$

- $3 x \subseteq y$
- **6** {x}
- \bullet (x,y)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- $2 x \cup \{x\}$

 \mathbf{o} $x \subseteq y$

 $3 x = n \ (\in \omega)$

- **6** {x}
- \bullet (x,y)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- $2 x \cup \{x\}$
- $\mathbf{0}$ $x \subseteq y$

 $3 x = n \ (\in \omega)$

- \bullet (x,y)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- **2** $x \cup \{x\}$ **3** $x = n \ (\in \omega)$

3 {x}

 \bullet (x,y)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

2 x = y

2 $x \cup \{x\}$ **3** $x = n \ (\in \omega)$

 $3 x \subseteq y$ $4 \{x, y\}$

3 {x}

 \bullet (x,y)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$\mathbf{0}$$
 x is a limit ordinal

$$2 x = y$$

$$2 x \cup \{x\}$$

$$\mathbf{o}$$
 $x \subseteq y$

$$\bullet$$
 (x,y)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

- 2 x = y
- $2 x \cup \{x\}$

 $3 x \subseteq y$ $4 \{x, y\}$

3 {x}

 $\mathbf{S} \quad x = n \ (\in \omega)$

 \bullet (x,y)

- $\mathbf{0}$ x is a limit ordinal
- $2 \quad x \cup y$

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$2 x = y$$

$$3 x \subseteq y$$

4
$$\{x,y\}$$
 4 $x = \omega$

$$\bullet$$
 (x,y)

$$\mathbf{o}$$
 x is transitive

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$2 x = y$$

$$2 x \cup \{x\}$$

$$x \subseteq y$$

$$\{x, y\}$$

6
$$(x, y)$$

 $\mathbf{S} \quad x = n \ (\in \omega)$

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

$$\bullet$$
 $x \times y$

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$\mathbf{0} \ x \in y$$

$$2 x = y$$

$$2 x \cup \{x\}$$

$$3 x \subseteq y$$

$$3 x = n \ (\in \omega)$$

$$4 x = \omega$$

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

$$\bullet$$
 $x \times y$

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$2 x = y$$

$$2 x \cup \{x\}$$

$$3 x \subseteq y$$

$$3 x = n \ (\in \omega)$$

$$\bullet$$
 (x,y)

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

$$\bullet$$
 $x \times y$

$$\bigcirc$$
 dom (x)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$\mathbf{0} \ x \in y$$

$$2 x = y$$

$$2 x \cup \{x\}$$

$$\mathbf{S}$$
 $x \subseteq y$

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

$$\bullet$$
 $x \times y$

$$\bigcirc$$
 dom(x)

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$2 x = y$$

$$2 x \cup \{x\}$$

$$\mathbf{S}$$
 $x \subseteq y$

$$\bullet$$
 (x,y)

$$\bullet$$
 x is an ordinal

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

$$\bullet$$
 $x \times y$

$$\bigcirc$$
 dom(x)

Exercises.

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$2 x = y$$

$$2 x \cup \{x\}$$

$$\mathbf{0}$$
 $x \subseteq y$

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

$$\bullet$$
 $x \times y$

$$\bigcirc$$
 dom (x)

Exercises. Verify for A(1), A(3), A(4), B(1), B(2).

Definition. A Δ_0 -formula is one that involves only **bounded quantification** (possibly no quantification at all). "Bounded quantification" means quantification of the form $(\forall x \in y)$ or $(\exists x \in y)$, but does not include quantification of the form $(\forall x)$ or $(\exists x)$.

Examples. The following class functions and relations can be defined by Δ_0 -formulas.

$$2 x = y$$

$$2 x \cup \{x\}$$

$$\mathbf{0}$$
 $x \subseteq y$

$$\bullet$$
 x is a limit ordinal

$$2 \quad x \cup y$$

$$\bullet$$
 $x \cap y$

$$\bullet$$
 $x \times y$

$$\bigcirc$$
 dom (x)

Exercises. Verify for A(1), A(3), A(4), B(1), B(2).

Example A(1).

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3).

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

$$(\forall z \in x)(z \in y)$$

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

$$(\forall z \in x)(z \in y)$$

Example B(5).

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

$$(\forall z \in x)(z \in y)$$

Example B(5). the relation "x is transitive" is expressible by the Δ_0 -formula

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

$$(\forall z \in x)(z \in y)$$

Example B(5). the relation "x is transitive" is expressible by the Δ_0 -formula

$$(\forall z \in x)((x \in y) \to (z \in y))$$

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

$$(\forall z \in x)(z \in y)$$

Example B(5). the relation "x is transitive" is expressible by the Δ_0 -formula

$$(\forall z \in x)((x \in y) \to (z \in y))$$

Example B(6).

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

$$(\forall z \in x)(z \in y)$$

Example B(5). the relation "x is transitive" is expressible by the Δ_0 -formula

$$(\forall z \in x)((x \in y) \to (z \in y))$$

Example B(6). the relation "x is an ordinal" is expressible by a Δ_0 -formula that says "x is a transitive set of transitive sets":

Example A(1). " $x \in y$ " is atomic, hence Δ_0 .

Example A(3). the relation " $x \subseteq y$ " is expressible by the Δ_0 -formula

$$(\forall z \in x)(z \in y)$$

Example B(5). the relation "x is transitive" is expressible by the Δ_0 -formula

$$(\forall z \in x)((x \in y) \to (z \in y))$$

Example B(6). the relation "x is an ordinal" is expressible by a Δ_0 -formula that says "x is a transitive set of transitive sets":

$$\mathsf{Transitive}(x) \land (\forall y \in x) \mathsf{Transitive}(y)$$

Δ_0 -Absoluteness

Δ_0 -Absoluteness

Theorem.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof:

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

● Atomic formulas are absolute.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

● Atomic formulas are absolute.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- **2** If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute. \checkmark

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute. \checkmark
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute. \checkmark
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute. \checkmark
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

For the third item, we need to justify the claim that if

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

For the third item, we need to justify the claim that if

$$(\forall xy\bar{z} \in M)(\alpha^M(x,y,\bar{z}) \leftrightarrow \alpha(x,y,\bar{z})),$$

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

For the third item, we need to justify the claim that if

$$(\forall xy\bar{z} \in M)(\alpha^M(x,y,\bar{z}) \leftrightarrow \alpha(x,y,\bar{z})),$$

then

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

For the third item, we need to justify the claim that if

$$(\forall xy\bar{z} \in M)(\alpha^M(x,y,\bar{z}) \leftrightarrow \alpha(x,y,\bar{z})),$$

then

$$\begin{array}{c} (\forall x \in M)((x \in y) \to \alpha^M(x,y,\bar{z})) \\ (\forall y\bar{z} \in M) & \updownarrow \\ (\forall x)((x \in y) \to \alpha(x,y,\bar{z})). \end{array}$$

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

For the third item, we need to justify the claim that if

$$(\forall xy\bar{z} \in M)(\alpha^M(x,y,\bar{z}) \leftrightarrow \alpha(x,y,\bar{z})),$$

then

$$(\forall x \in M)((x \in y) \to \alpha^M(x, y, \bar{z}))$$
$$(\forall y\bar{z} \in M) \qquad \qquad \updownarrow \qquad \qquad (\forall x)((x \in y) \to \alpha(x, y, \bar{z})).$$

 $y \in M, x \in M$ and $x \in y$ is equivalent to $x \in y \in M$ since M is transitive.

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

For the third item, we need to justify the claim that if

$$(\forall xy\bar{z} \in M)(\alpha^M(x,y,\bar{z}) \leftrightarrow \alpha(x,y,\bar{z})),$$

then

$$(\forall x \in M)((x \in y) \to \alpha^M(x, y, \bar{z}))$$
$$(\forall y\bar{z} \in M) \qquad \qquad \updownarrow$$
$$(\forall x)((x \in y) \to \alpha(x, y, \bar{z})).$$

 $y \in M, x \in M$ and $x \in y$ is equivalent to $x \in y \in M$ since M is transitive. \checkmark

Theorem. Δ_0 -formulas are absolute for transitive classes.

Proof: Let M be a transitive class. It suffices to show that

- ◆ Atomic formulas are absolute.
- ② If α and β are absolute, then $\neg \alpha$ and $\alpha \wedge \beta$ are absolute.
- **3** If α is absolute, then $(\forall x \in y)\alpha$ is absolute.

For the third item, we need to justify the claim that if

$$(\forall xy\bar{z} \in M)(\alpha^M(x,y,\bar{z}) \leftrightarrow \alpha(x,y,\bar{z})),$$

then

$$(\forall x \in M)((x \in y) \to \alpha^M(x, y, \bar{z}))$$
$$(\forall y\bar{z} \in M) \qquad \qquad \updownarrow$$
$$(\forall x)((x \in y) \to \alpha(x, y, \bar{z})).$$

 $y\in M,$ $x\in M$ and $x\in y$ is equivalent to $x\in y\in M$ since M is transitive. \checkmark

• (Proposition 13.4 of NST)

• (Proposition 13.4 of NST)

① (Proposition 13.4 of NST) If $M \subseteq N$ are class models

• (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N,

• (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N

• (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- (Theorem 13.7 of NST)

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- (Theorem 13.7 of NST)

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition:

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute,

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST)

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST)

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- **(Theorem 13.12 of NST)**

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- **(Theorem 13.12 of NST)**

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- (Theorem 13.12 of NST) In particular, the following are absolute for transitive class models of ZF:

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- (Theorem 13.12 of NST) In particular, the following are absolute for transitive class models of ZF:
 - ordinal arithmetic

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- (Theorem 13.12 of NST) In particular, the following are absolute for transitive class models of ZF:
 - ordinal arithmetic
 - \circ rank(x)

Absoluteness 7.

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- (Theorem 13.12 of NST) In particular, the following are absolute for transitive class models of ZF:
 - ordinal arithmetic
 - \circ rank(x)
 - \bullet tr.cl(x)

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- (Theorem 13.12 of NST) In particular, the following are absolute for transitive class models of ZF:
 - ordinal arithmetic
 - \circ rank(x)
 - \bullet tr.cl(x)
- **(Theorem 13.13, NST)**

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- (Theorem 13.12 of NST) In particular, the following are absolute for transitive class models of ZF:
 - ordinal arithmetic
 - \circ rank(x)
 - \bullet tr.cl(x)
- **(Theorem 13.13, NST)**

- (Proposition 13.4 of NST) If $M \subseteq N$ are class models and F is a class function defined in both M and N by a formula that is absolute for M, N, then F has the same meaning in M and N (= computes the same value in M as in N on inputs from M).
- ② (Theorem 13.7 of NST) Absoluteness is preserved by composition: If $\varphi(x_1,\ldots,x_n)$, $F(x_1,\ldots,x_n)$, and $G_i(\bar{y})$ are absolute, then so are $\varphi(G_1,\ldots,G_n)$ and $F(G_1,\ldots,G_n)$.
- (Theorem 13.11 of NST) A function defined by recursion in a transitive class model M using absolute concepts will be absolute.
- (Theorem 13.12 of NST) In particular, the following are absolute for transitive class models of ZF:
 - ordinal arithmetic
 - \circ rank(x)
 - \bullet tr.cl(x)
- **③** (Theorem 13.13, NST) If M is a transitive model of ZF, then $\mathcal{P}^M(x) = \mathcal{P}^V(x) \cap M$ and $V_{\alpha}^M = V_{\alpha} \cap M$.

 \bullet (\neg AC) x is a nonempty partition that has no choice function.

- \bullet (\neg AC) x is a nonempty partition that has no choice function.

- lacktriangledown (\neg AC) x is a nonempty partition that has no choice function.
- \bullet x is Dedekind finite.

- lacktriangledown (\neg AC) x is a nonempty partition that has no choice function.

- $|x| = \aleph_0.$

- lacktriangledown (\neg AC) x is a nonempty partition that has no choice function.

- $|x| = \aleph_0.$

- lacktriangle (\neg AC) x is a nonempty partition that has no choice function.

- $|x| = \aleph_0.$
- x is a cardinal.
- \bullet x is a regular cardinal.

- \bullet (\neg AC) x is a nonempty partition that has no choice function.

- $|x| = \aleph_0.$
- x is a cardinal.
- \bullet x is a regular cardinal.
- x a strongly inaccessible cardinal.

- \bullet (\neg AC) x is a nonempty partition that has no choice function.

- $|x| = \aleph_0.$
- x is a cardinal.
- \bullet x is a regular cardinal.
- x a strongly inaccessible cardinal.

- lacktriangle (\neg AC) x is a nonempty partition that has no choice function.

- $|x| = \aleph_0.$
- x is a cardinal.
- \bullet x is a regular cardinal.
- ② x a strongly inaccessible cardinal. (i.e., x is a regular cardinal, and |y|<|x| implies $|\mathcal{P}(y)|<|x|$).

- lacktriangle (\neg AC) x is a nonempty partition that has no choice function.

- $|x| = \aleph_0.$
- x is a cardinal.
- \bullet x is a regular cardinal.
- ② x a strongly inaccessible cardinal. (i.e., x is a regular cardinal, and |y|<|x| implies $|\mathcal{P}(y)|<|x|$).
- **③** (GCH) For any infinite x and y, if $|x| ≤ |y| ≤ |\mathcal{P}(x)|$, then |x| = |y| or $|y| = |\mathcal{P}(x)|$.