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@ The constant symbol A, which is intended to denote the set of atoms.
@ The constant symbol ) (or 0), which is intended to denote the empty set.
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The axioms of ZFA

The axioms of ZFA are the same as the axioms for ZFC, with the following
exceptions:

Exception 1. (Empty Set)
~(Fy)(y €0).

Exception 2. (Atoms)
(Vz)((z € 4) « ((z # 0) A =(Fy)(y € 2))).

Any element of the universe that is not an atom will be called a “set”. There is
a first-order formula that defines what it means to be a set, namely

Yset(T) : (x & A).
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The axioms of ZFA - further exceptions

We restrict the ZFC axioms of Extensionality and Foundation to sets, only.

Exception 3. (Extensionality)

(V) (VY) [(pset (2) A psen(y)) = (& = y) & (V2)((z € 2) & (2 € 9)))].

(Vsets x)(Vsets y)((x = y) « (V2)((z € z) + (2 € 1))).

Exception 4. (Foundation)
(Vsets 2)(Fy)((y € z) A (z Ny = 0)).
You can see what damage it would cause if we didn’t restrict Extensionality

and Foundation to sets only.
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Exercise. Let A = {a, b}. Find V;(A4), V1(4), Va(A).
o VO(A) = {avb}'
@ Vi(A4) ={a,b,0,{a}, {b},{a,b}}.

Q V>2(A) = V1i(A) UP(V1(A)) equals the union of {a, b} and the 64-element set
P({a,b,0,{a},{b},{a,b}}), which I don’t want to write down. Three
examples of the ‘complex’ elements in V5(A) are

X = {®7 {av b}}a Y = {@, a, {b}a {aa b}} and Z = {wﬂ {a}v b, {a7 b}}

Follow-up Question. The permutation 7 = (a b) of A = {a, b} induces an
automorphism 7 of the structure (V (A); € A, 0).

The Axioms of ZFA 6/6



Partial Solution to the Exercise!

Exercise. Let A = {a, b}. Find V;(A4), V1(4), Va(A).
o VO(A) = {avb}'
@ Vi(A4) ={a,b,0,{a}, {b},{a,b}}.

Q V>2(A) = V1i(A) UP(V1(A)) equals the union of {a, b} and the 64-element set
P({a,b,0,{a},{b},{a,b}}), which I don’t want to write down. Three
examples of the ‘complex’ elements in V5(A) are

X = {®7 {av b}}a Y = {@, a, {b}a {aa b}} and Z = {wﬂ {a}v b, {a7 b}}
Follow-up Question. The permutation 7 = (a b) of A = {a, b} induces an

automorphism 7 of the structure (V' (A); € A, (). Must this automorphism be the
identity?
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Partial Solution to the Exercise!

Exercise. Let A = {a, b}. Find V;(A4), V1(4), Va(A).
o VO(A) = {avb}'
@ Vi(A4) ={a,b,0,{a}, {b},{a,b}}.

Q V>2(A) = V1i(A) UP(V1(A)) equals the union of {a, b} and the 64-element set
P({a,b,0,{a},{b},{a,b}}), which I don’t want to write down. Three
examples of the ‘complex’ elements in V5(A) are

X = {®7 {av b}}a Y = {@, a, {b}a {aa b}} and Z = {wﬂ {a}v b, {a7 b}}
Follow-up Question. The permutation 7 = (a b) of A = {a, b} induces an
automorphism 7 of the structure (V' (A); € A, (). Must this automorphism be the

identity?

Answer.
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o VO(A) = {avb}'
@ Vi(A4) ={a,b,0,{a}, {b},{a,b}}.

Q V>2(A) = V1i(A) UP(V1(A)) equals the union of {a, b} and the 64-element set
P({a,b,0,{a},{b},{a,b}}), which I don’t want to write down. Three
examples of the ‘complex’ elements in V5(A) are

X = {®7 {av b}}a Y = {@, a, {b}a {aa b}} and Z = {wﬂ {a}v b, {a7 b}}
Follow-up Question. The permutation 7 = (a b) of A = {a, b} induces an
automorphism 7 of the structure (V' (A); € A, (). Must this automorphism be the

identity?

Answer. No.
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Partial Solution to the Exercise!

Exercise. Let A = {a, b}. Find V;(A4), V1(4), Va(A).
o VO(A) = {avb}'
@ Vi(A4) ={a,b,0,{a}, {b},{a,b}}.

Q V>2(A) = V1i(A) UP(V1(A)) equals the union of {a, b} and the 64-element set
P({a,b,0,{a},{b},{a,b}}), which I don’t want to write down. Three
examples of the ‘complex’ elements in V5(A) are

X = {®7 {av b}}a Y = {@, a, {b}a {aa b}} and Z = {wﬂ {a}v b, {a7 b}}

Follow-up Question. The permutation 7 = (a b) of A = {a, b} induces an
automorphism 7 of the structure (V' (A); € A, (). Must this automorphism be the
identity?

—

Answer. No. 7 = (a b) switches a,b € V(A), so T cannot be the identity.
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o VO(A) = {avb}'
@ Vi(A4) ={a,b,0,{a}, {b},{a,b}}.

Q V>2(A) = V1i(A) UP(V1(A)) equals the union of {a, b} and the 64-element set
P({a,b,0,{a},{b},{a,b}}), which I don’t want to write down. Three
examples of the ‘complex’ elements in V5(A) are

X = {®7 {av b}}a Y = {@, a, {b}a {aa b}} and Z = {wﬂ {a}v b, {a7 b}}
Follow-up Question. The permutation 7 = ( b) of A = {a,b} induces an
automorphism 7 of the structure (V' (A); € A, (). Must this automorphism be the

identity?

Answer. No. 7 = (a b) switches a,b € V(A), so 7 cannot be the identity. It also
switches Y and Z from above, which is more evidence that it is not the identity.

The Axioms of ZFA 6/6



Partial Solution to the Exercise!

Exercise. Let A = {a, b}. Find V;(A4), V1(4), Va(A).
o VO(A) = {avb}'
@ Vi(A4) ={a,b,0,{a}, {b},{a,b}}.

Q V>2(A) = V1i(A) UP(V1(A)) equals the union of {a, b} and the 64-element set
P({a,b,0,{a},{b},{a,b}}), which I don’t want to write down. Three
examples of the ‘complex’ elements in V5(A) are

X = {®7 {av b}}a Y = {@, a, {b}a {aa b}} and Z = {wﬂ {a}v b, {a7 b}}

Follow-up Question. The permutation 7 = ( b) of A = {a,b} induces an
automorphism 7 of the structure (V' (A); € A, (). Must this automorphism be the
identity?

Answer. No. 7 = (/a-b\) switches a,b € V(A), so 7 cannot be the identity. It also
switches Y and Z from above, which is more evidence that it is not the identity.
However, note that 7 fixes a lot of V' (A), e.g., 7 fixes (i) any pure set, (ii) the set A of
atoms, and (iii) the set X = {0, {a, b} } from above.
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