The Peano Axioms.

From Arithmetices principia (1889). Formulario mathematico (1894).

There is a Natural Number

(1) 1 is a natural number 0 is a natural number

Axioms of equality (= is an equivalence relation and \mathbb{N} is a union of =-classes)

- (2) For every natural number x, x = x.
- (3) For all natural numbers x and y, if x = y, then y = x.
- (4) For all natural numbers x, y and z, if x = y and y = z, then x = z.
- (5) For all a and b, if b is a natural number and a = b, then a is also a natural number.

Axioms of Successor

- (6) For every natural number n, S(n) is a natural number.
- (7) For all natural numbers m and n, if S(m) = S(n), then m = n.
- (8) For every natural number n, S(n) = 0 is false.

Induction

(9) (Second-Order Induction)

$$\forall X(((0 \in X) \land (\forall x)(x \in X \rightarrow S(x) \in X)) \rightarrow (\forall x)(x \in X))$$

(9)' (First-Order Induction Scheme) For any first-order formula $\varphi(x)$

$$((\varphi(0) \land (\forall x)(\varphi(x) \to \varphi(S(x)))) \to (\forall x)(\varphi(x)))$$

Exercise. Work in a language whose nonlogical symbols are 0, S(x) and c (= an additional constant symbol). Let \mathscr{P} be the set of **P1-P9**. Let $\Gamma = \mathscr{P} \cup \Sigma$ where Σ contains all sentences of the form $c \neq 0, c \neq S(0), c \neq S(S(0)), \ldots$ A model of Γ is a Peano structure containing a nonstandard natural number c.

- (1) Show that Γ is finitely satisfiable.
- (2) Explain why Γ has a model if the first-order version of **P9** is used, but does not have a model if the second-order version of **P9** is used.