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Terminology

Definitions.
Q@ Aclass M in V is transitive, if x € M implies x C M.

© Aclass M in V is almost universal if z € V and x C M implies
Jy € M such that x C y.
© The Godel operations are

©0000000Q

Fl(Iay) - {'I,y}

Do(z,y) =2 —y

D3(z,y) =z xy

I'y(z) = dom(x)

Ds(x) =€ |, =€ N(x X z)
Ts(z) = {(a,b,¢) | (b,c,a) € x}
1—‘7(1') = {(aabac) | (Ca bv a) € 1’}
Is(z) = {(a,b,¢) | (a,c,b) € x}
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symmetric, it suffices to verify that V,,(A) is symmetric. In fact,

Claim. Stab(V,,(4)) = G.
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y = Vo (A) NON. Each z € y belongs to MM, hence is hereditarily symmetric. If we
show that y itself is symmetric, then y will be hereditarily symmetric. Since 91 is
symmetric, it suffices to verify that V,,(A) is symmetric. In fact,
Claim. Stab(V,,(A)) = G. (Use transfinite induction.)

Q W(4)=A4

Q Vori1(A) = Vo (A) UP(V,L(A)

Q Vi(4) = Uﬁ<,\ Vs(A).
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We must argue that «, y € 9 implies I';(z,y) € 9, i = 1,...,8. The precise nature
of the Godel operations is not important, only the fact that they have at most 2
arguments.

Assume that x, y € 9. Choose aq, ..., an, b1, ..., b, such that
Stab(z) 2 Ga,,....a,, and Stab(y) 2 Gy, ..p,-

Then Ty (z,y) = {z, y},
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Assume that x, y € 9. Choose aq, ..., an, b1, ..., b, such that
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We must argue that «, y € 9 implies I';(z,y) € 9, i = 1,...,8. The precise nature
of the Godel operations is not important, only the fact that they have at most 2
arguments.

Assume that x, y € 9. Choose aq, ..., an, b1, ..., b, such that
Stab(z) 2 Ga,,....a,, and Stab(y) 2 Gy, ..p,-

Then 'y (z,) = {z,y}, hence Stab(I'; (2,y)) = Stab({z,y}) 2 Ga,.....am.br.eecibn>
hence I'y (z, y) € M.
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We must argue that «, y € 9 implies I';(z,y) € 9, i = 1,...,8. The precise nature
of the Godel operations is not important, only the fact that they have at most 2
arguments.

Assume that x, y € 9. Choose aq, ..., an, b1, ..., b, such that
Stab(z) 2 Ga,,....a,, and Stab(y) 2 Gy, ..p,-

Then I'y (z,y) = {z,y}, hence Stab(I'y (x, y)) = Stab({x, y}) D Gay,....am b1,....bns
hence I'y (z, y) € 9. Similarly for each of

Q li(z,y) = {z,y}
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Assume that x, y € 9. Choose aq, ..., an, b1, ..., b, such that
Stab(z) 2 Ga,,....a,, and Stab(y) 2 Gy, ..p,-

Then I'y (z,y) = {z,y}, hence Stab(I'y (x, y)) = Stab({x, y}) D Gay,....am b1,....bns
hence I'y (z, y) € 9. Similarly for each of

Q Ii(z,y) ={z v}

O DNo(z,y)=z—y

Q Is(zyy)=zxy
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of the Godel operations is not important, only the fact that they have at most 2
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We must argue that «, y € 9 implies I';(z,y) € 9, i = 1,...,8. The precise nature
of the Godel operations is not important, only the fact that they have at most 2
arguments.

Assume that x, y € 9. Choose aq, ..., an, b1, ..., b, such that
Stab(z) 2 Ga,,....a,, and Stab(y) 2 Gy, ..p,-

Then I'y (2, y) = {z,y}, hence Stab(I'y (z,y)) = Stab({z,y}) 2 Ga,....a,n.b1.....bn>
hence I'y (z, y) € 9. Similarly for each of

Q Ti(z,y) = {=,y}

Q N(z,y)=z-y

Q I's(z,y) =z xy

Q Ti(z) =dom(z),z C (y X 2)
@ Is(z) =€ |, =eN(z x x)

Q Ts(z) ={(a,b,¢) | (b,c,a) € z}
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We must argue that «, y € 9 implies I';(z,y) € 9, i = 1,...,8. The precise nature
of the Godel operations is not important, only the fact that they have at most 2
arguments.

Assume that x, y € 9. Choose aq, ..., an, b1, ..., b, such that
Stab(z) 2 Ga,,....a,, and Stab(y) 2 Gy, ..p,-

Then I'y (2, y) = {z,y}, hence Stab(I'y (z,y)) = Stab({z,y}) 2 Ga,....a,n.b1.....bn>
hence I'y (z, y) € 9. Similarly for each of

Q Ti(z,y) = {=,y}

Q IN(z,y)=z—y

Q Is(zyy)=zxy

Q Ti(z) =dom(z),z C (y X 2)
Q I's(z) =€ |, =eN(z x z)

Q Ts(z) ={(a,b,¢) | (b,c,a) € z}
@ T7(z) ={(a,b,¢) | (¢,b,a) € z}
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We must argue that «, y € 9 implies I';(z,y) € 9, i = 1,...,8. The precise nature
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It contains the kernel and contains A

If z = A or z is in the kernel, then

Stab(z) = G (€ F),
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It contains the kernel and contains A

If z = A or z is in the kernel, then
Stab(z) = G (€ F),

soz € M.
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ZFA. Let’s check the ZFA versions of Extensionality and Foundation for the
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z,y ¢ A) and  and y have the same elements. Since 2 and y are sets and 91
is transitive, x and y have the same elements when they are considered to be
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We are applying a theorem developed to establish that a class is a model of
ZF, but we are trying to apply it to show that Fraenkel’s First Model satisfies
ZFA. Let’s check the ZFA versions of Extensionality and Foundation for the
class 91 now.

01 Satisfies ZFA Extensionality. Assume that x,y € 91 are sets (i.e.,

z,y ¢ A) and  and y have the same elements. Since 2 and y are sets and 91
is transitive, x and y have the same elements when they are considered to be
elements of V. Hence x = y, since V satisfies Extensionality.

I Satisfies ZFA Foundation.
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We are applying a theorem developed to establish that a class is a model of
ZF, but we are trying to apply it to show that Fraenkel’s First Model satisfies
ZFA. Let’s check the ZFA versions of Extensionality and Foundation for the
class 91 now.

01 Satisfies ZFA Extensionality. Assume that x,y € 91 are sets (i.e.,

z,y ¢ A) and  and y have the same elements. Since 2 and y are sets and 91
is transitive, x and y have the same elements when they are considered to be
elements of V. Hence x = y, since V satisfies Extensionality.

I Satisfies ZFA Foundation. Assume that x is a set in 971.
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We are applying a theorem developed to establish that a class is a model of
ZF, but we are trying to apply it to show that Fraenkel’s First Model satisfies
ZFA. Let’s check the ZFA versions of Extensionality and Foundation for the
class 91 now.

01 Satisfies ZFA Extensionality. Assume that x,y € 91 are sets (i.e.,

z,y ¢ A) and  and y have the same elements. Since 2 and y are sets and 91
is transitive, x and y have the same elements when they are considered to be
elements of V. Hence x = y, since V satisfies Extensionality.

It Satisfies ZFA Foundation. Assume that x is a set in 91. (Not an atom!)
Then x has the same elements and the same €-relation in V', where
Foundation holds. Let y € x be €-minimal in V.
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We are applying a theorem developed to establish that a class is a model of
ZF, but we are trying to apply it to show that Fraenkel’s First Model satisfies
ZFA. Let’s check the ZFA versions of Extensionality and Foundation for the
class 91 now.

01 Satisfies ZFA Extensionality. Assume that x,y € 91 are sets (i.e.,

z,y ¢ A) and  and y have the same elements. Since 2 and y are sets and 91
is transitive, x and y have the same elements when they are considered to be
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Then x has the same elements and the same €-relation in V', where
Foundation holds. Let y € x be €-minimalin V. (y € x and y Nz = ().
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ZF or ZFA?

We are applying a theorem developed to establish that a class is a model of
ZF, but we are trying to apply it to show that Fraenkel’s First Model satisfies
ZFA. Let’s check the ZFA versions of Extensionality and Foundation for the
class 91 now.

01 Satisfies ZFA Extensionality. Assume that x,y € 91 are sets (i.e.,

z,y ¢ A) and  and y have the same elements. Since 2 and y are sets and 91
is transitive, x and y have the same elements when they are considered to be
elements of V. Hence x = y, since V satisfies Extensionality.

It Satisfies ZFA Foundation. Assume that x is a set in 91. (Not an atom!)
Then x has the same elements and the same €-relation in V', where
Foundation holds. Let y € x be €-minimal in V. (y € x and y N x = (). Then
y € M (by transitivity), y € x, and y Nz = () in M.
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