Permutation Models of ZFA

Theorem.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. Let V be a model of ZF.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

1 transitive,

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

transitive,

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

- 1 transitive,
- 2 almost universal, and

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

- 1 transitive,
- 2 almost universal, and

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

- transitive,
- almost universal, and
- Oclosed under the Gödel operations,

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

- transitive,
- almost universal, and
- Oclosed under the Gödel operations,

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- Solution of the state of the

then M is a model of ZF.

Theorem. For any choice of a subgroup $G \leq \operatorname{Sym}(A)$ and any choice of a normal filter $\mathcal{F} \subseteq \operatorname{Sub}(G)$ the class of hereditarily symmetric elements of V(A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. Let V be a model of ZF. Let M be a class in V. If M is

- transitive,
- almost universal, and
- Solution of the Gödel operations,

then M is a model of ZF.

Definitions.

① A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- ② A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **2** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

 - $\Gamma_4(x) = \operatorname{dom}(x)$

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$

 - $\Gamma_4(x) = \operatorname{dom}(x)$
 - $\Gamma_5(x) = \in |_x = \in \cap (x \times x)$

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

 - 1 3(x, y) = x × y 1 $\Gamma_4(x) = \text{dom}(x)$
 - $\Gamma_5(x) = \in |_x = \in \cap (x \times x)$
 - $\Gamma_6(x) = \{(a, b, c) \mid (b, c, a) \in x\}$

- **①** A class M in V is **transitive**, if $x \in M$ implies $x \subseteq M$.
- **②** A class M in V is **almost universal** if $x \in V$ and $x \subseteq M$ implies $\exists y \in M$ such that $x \subseteq y$.
- The Gödel operations are
 - $\Gamma_1(x,y) = \{x,y\}$
 - $\Gamma_2(x,y) = x y$

 - $\Gamma_3(x, y) = x \times y$ $\Gamma_4(x) = \operatorname{dom}(x)$
 - $\bullet \quad \Gamma_5(x) = \in |_x = \in \cap (x \times x)$

Theorem.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A],

Theorem. Fraenkel's first model $\mathfrak M$ satisfies the axioms of ZF[A], $\mathfrak M$ contains the kernel, and

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Theorem. Fraenkel's first model $\mathfrak M$ satisfies the axioms of ZF[A], $\mathfrak M$ contains the kernel, and $\mathfrak M$ contains A.

Proof:

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: $\mathfrak M$ is transitive, since if $x\in \mathfrak M$ is hereditarily symmetric, then each of its elements is.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that \mathfrak{M} is almost universal, choose $x \in V$ such that $x \subseteq \mathfrak{M}$.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that \mathfrak{M} is almost universal, choose $x \in V$ such that $x \subseteq \mathfrak{M}$. We must locate $y \in \mathfrak{M}$ such that $x \subseteq y$. Since $x \in V$ and $x \subseteq \mathfrak{M} \subseteq V(A)$,

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that \mathfrak{M} is almost universal, choose $x \in V$ such that $x \subseteq \mathfrak{M}$. We must locate $y \in \mathfrak{M}$ such that $x \subseteq y$. Since $x \in V$ and $x \subseteq \mathfrak{M} \subseteq V(A)$, we have $x \subseteq V_{\alpha}(A) \cap \mathfrak{M}$ for some α .

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that \mathfrak{M} is almost universal, choose $x \in V$ such that $x \subseteq \mathfrak{M}$. We must locate $y \in \mathfrak{M}$ such that $x \subseteq y$. Since $x \in V$ and $x \subseteq \mathfrak{M} \subseteq V(A)$, we have $x \subseteq V_{\alpha}(A) \cap \mathfrak{M}$ for some α . (Here I am using the fact that $\operatorname{rank}_{V(A)}(x) \leq \operatorname{rank}_{V}(x)$.)

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

Claim.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

Claim. Stab $(V_{\alpha}(A)) = G$.

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

$$V_0(A) = A$$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

$$V_0(A) = A$$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

- $V_0(A) = A$
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A))$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

- $V_0(A) = A$
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A))$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

- $V_0(A) = A$
- $V_{\alpha+1}(A) = V_{\alpha}(A) \cup \mathcal{P}(V_{\alpha}(A))$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

- $V_0(A) = A$

Theorem. Fraenkel's first model \mathfrak{M} satisfies the axioms of ZF[A], \mathfrak{M} contains the kernel, and \mathfrak{M} contains A.

Proof: \mathfrak{M} is transitive, since if $x \in \mathfrak{M}$ is hereditarily symmetric, then each of its elements is. $(x \in \mathfrak{M} \Rightarrow x \subseteq \mathfrak{M}.)$

To show that $\mathfrak M$ is almost universal, choose $x\in V$ such that $x\subseteq \mathfrak M$. We must locate $y\in \mathfrak M$ such that $x\subseteq y$. Since $x\in V$ and $x\subseteq \mathfrak M\subseteq V(A)$, we have $x\subseteq V_\alpha(A)\cap \mathfrak M$ for some α . (Here I am using the fact that $\mathrm{rank}_{V(A)}(x)\leq \mathrm{rank}_V(x)$.) I will take $y=V_\alpha(A)\cap \mathfrak M$. Each $z\in y$ belongs to $\mathfrak M$, hence is hereditarily symmetric. If we show that y itself is symmetric, then y will be hereditarily symmetric. Since $\mathfrak M$ is symmetric, it suffices to verify that $V_\alpha(A)$ is symmetric. In fact,

- $V_0(A) = A$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, $i = 1, \dots, 8$.

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important,

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

Then $\Gamma_1(x,y) = \{x,y\},\$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

Then
$$\Gamma_1(x,y) = \{x,y\}$$
, hence $\operatorname{Stab}(\Gamma_1(x,y)) = \operatorname{Stab}(\{x,y\}) \supseteq G_{a_1,\dots,a_m,b_1,\dots,b_n}$,

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

Then $\Gamma_1(x,y)=\{x,y\}$, hence $\operatorname{Stab}(\Gamma_1(x,y))=\operatorname{Stab}(\{x,y\})\supseteq G_{a_1,\dots,a_m,b_1,\dots,b_n}$, hence $\Gamma_1(x,y)\in\mathfrak{M}$.

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\dots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\dots,b_n}$.

Then $\Gamma_1(x,y)=\{x,y\}$, hence $\operatorname{Stab}(\Gamma_1(x,y))=\operatorname{Stab}(\{x,y\})\supseteq G_{a_1,\dots,a_m,b_1,\dots,b_n}$, hence $\Gamma_1(x,y)\in\mathfrak{M}$. Similarly for each of

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\dots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\dots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

- **8** $\Gamma_8(x) = \{(a, b, c) \mid (a, c, b) \in x\}$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

- **8** $\Gamma_8(x) = \{(a, b, c) \mid (a, c, b) \in x\}$

We must argue that $x, y \in \mathfrak{M}$ implies $\Gamma_i(x, y) \in \mathfrak{M}$, i = 1, ..., 8. The precise nature of the Gödel operations is not important, only the fact that they have at most 2 arguments.

Assume that $x, y \in \mathfrak{M}$. Choose $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$\operatorname{Stab}(x) \supseteq G_{a_1,\ldots,a_m}$$
 and $\operatorname{Stab}(y) \supseteq G_{b_1,\ldots,b_n}$.

- **1** $\Gamma_1(x,y) = \{x,y\}$

- **8** $\Gamma_8(x) = \{(a, b, c) \mid (a, c, b) \in x\}$

If x = A or x is in the kernel, then

If x = A or x is in the kernel, then

$$\operatorname{Stab}(x) = G$$

If x = A or x is in the kernel, then

$$\operatorname{Stab}(x) = G \ (\in \mathcal{F}),$$

If x = A or x is in the kernel, then

$$\operatorname{Stab}(x)=G\ (\in \mathcal{F}),$$

so $x \in \mathfrak{M}$.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class \mathfrak{M} now.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

M Satisfies ZFA Extensionality.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 $\mathfrak M$ Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak M$ are sets

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 $\mathfrak M$ Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak M$ are sets (i.e., $x,y\notin A$)

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x, y \in \mathfrak{M}$ are sets (i.e., $x, y \notin A$) and x and y have the same elements.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x, y \in \mathfrak{M}$ are sets (i.e., $x, y \notin A$) and x and y have the same elements. Since x and y are sets

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x, y \in \mathfrak{M}$ are sets (i.e., $x, y \notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive,

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

M Satisfies ZFA Foundation.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

 \mathfrak{M} Satisfies ZFA Foundation. Assume that x is a set in \mathfrak{M} .

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

 \mathfrak{M} Satisfies ZFA Foundation. Assume that x is a set in \mathfrak{M} . (Not an atom!)

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

 \mathfrak{M} Satisfies ZFA Foundation. Assume that x is a set in \mathfrak{M} . (Not an atom!) Then x has the same elements and the same \in -relation in V,

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

 \mathfrak{M} Satisfies ZFA Foundation. Assume that x is a set in \mathfrak{M} . (Not an atom!) Then x has the same elements and the same \in -relation in V, where Foundation holds.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

 \mathfrak{M} Satisfies ZFA Foundation. Assume that x is a set in \mathfrak{M} . (Not an atom!) Then x has the same elements and the same \in -relation in V, where Foundation holds. Let $y \in x$ be \in -minimal in V.

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

 \mathfrak{M} Satisfies ZFA Foundation. Assume that x is a set in \mathfrak{M} . (Not an atom!) Then x has the same elements and the same \in -relation in V, where Foundation holds. Let $y \in x$ be \in -minimal in V. ($y \in x$ and $y \cap x = \emptyset$).

We are applying a theorem developed to establish that a class is a model of ZF, but we are trying to apply it to show that Fraenkel's First Model satisfies ZFA. Let's check the ZFA versions of Extensionality and Foundation for the class $\mathfrak M$ now.

 \mathfrak{M} Satisfies ZFA Extensionality. Assume that $x,y\in \mathfrak{M}$ are sets (i.e., $x,y\notin A$) and x and y have the same elements. Since x and y are sets and \mathfrak{M} is transitive, x and y have the same elements when they are considered to be elements of V. Hence x=y, since V satisfies Extensionality.

 \mathfrak{M} Satisfies ZFA Foundation. Assume that x is a set in \mathfrak{M} . (Not an atom!) Then x has the same elements and the same \in -relation in V, where Foundation holds. Let $y \in x$ be \in -minimal in V. $(y \in x \text{ and } y \cap x = \emptyset)$. Then $y \in \mathfrak{M}$ (by transitivity), $y \in x$, and $y \cap x = \emptyset$ in \mathfrak{M} .