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The theorem to be proved

Theorem. For any choice of a subgroup G ≤ Sym(A) and any choice of a
normal filter F ⊆ Sub(G) the class of hereditarily symmetric elements of
V (A) is a model of ZFA that contains the kernel and the set A.

We will establish this by proving and applying the following theorem:

Theorem. Let V be a model of ZF. Let M be a class in V . If M is

1 transitive,
2 almost universal, and
3 closed under the Gödel operations,

then M is a model of ZF.
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Terminology

Definitions.

1 A class M in V is transitive, if x ∈ M implies x ⊆ M .
2 A class M in V is almost universal if x ∈ V and x ⊆ M implies

∃y ∈ M such that x ⊆ y.
3 The Gödel operations are

1 Γ1(x, y) = {x, y}
2 Γ2(x, y) = x − y
3 Γ3(x, y) = x × y
4 Γ4(x) = dom(x)
5 Γ5(x) =∈ |x =∈ ∩(x × x)
6 Γ6(x) = {(a, b, c) | (b, c, a) ∈ x}
7 Γ7(x) = {(a, b, c) | (c, b, a) ∈ x}
8 Γ8(x) = {(a, b, c) | (a, c, b) ∈ x}
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Application

Theorem. Fraenkel’s first model M satisfies the axioms of ZF[A], M contains the
kernel, and M contains A.

Proof: M is transitive, since if x ∈ M is hereditarily symmetric, then each of its
elements is. (x ∈ M ⇒ x ⊆ M.)

To show that M is almost universal, choose x ∈ V such that x ⊆ M. We must locate
y ∈ M such that x ⊆ y. Since x ∈ V and x ⊆ M ⊆ V (A), we have x ⊆ Vα(A) ∩ M
for some α. (Here I am using the fact that rankV (A)(x) ≤ rankV (x).) I will take
y = Vα(A) ∩ M. Each z ∈ y belongs to M, hence is hereditarily symmetric. If we
show that y itself is symmetric, then y will be hereditarily symmetric. Since M is
symmetric, it suffices to verify that Vα(A) is symmetric. In fact,

Claim. Stab(Vα(A)) = G. (Use transfinite induction.)

1 V0(A) = A

2 Vα+1(A) = Vα(A) ∪ P(Vα(A))
3 Vλ(A) =

⋃
β<λ Vβ(A).
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⋃
β<λ Vβ(A).
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M is closed under the Gödel operations

We must argue that x, y ∈ M implies Γi(x, y) ∈ M, i = 1, . . . , 8. The precise nature
of the Gödel operations is not important, only the fact that they have at most 2
arguments.

Assume that x, y ∈ M. Choose a1, . . . , am, b1, . . . , bn such that

Stab(x) ⊇ Ga1,...,am and Stab(y) ⊇ Gb1,...,bn .

Then Γ1(x, y) = {x, y}, hence Stab(Γ1(x, y)) = Stab({x, y}) ⊇ Ga1,...,am,b1,...,bn
,

hence Γ1(x, y) ∈ M. Similarly for each of

1 Γ1(x, y) = {x, y}
2 Γ2(x, y) = x − y

3 Γ3(x, y) = x × y

4 Γ4(x) = dom(x) , x ⊆ (y × z)
5 Γ5(x) =∈ |x =∈ ∩(x × x)
6 Γ6(x) = {(a, b, c) | (b, c, a) ∈ x}
7 Γ7(x) = {(a, b, c) | (c, b, a) ∈ x}
8 Γ8(x) = {(a, b, c) | (a, c, b) ∈ x} 2
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M contains the kernel and contains A

If x = A or x is in the kernel, then

Stab(x) = G (∈ F),

so x ∈ M.
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ZF or ZFA?

We are applying a theorem developed to establish that a class is a model of
ZF, but we are trying to apply it to show that Fraenkel’s First Model satisfies
ZFA. Let’s check the ZFA versions of Extensionality and Foundation for the
class M now.

M Satisfies ZFA Extensionality. Assume that x, y ∈ M are sets (i.e.,
x, y /∈ A) and x and y have the same elements. Since x and y are sets and M
is transitive, x and y have the same elements when they are considered to be
elements of V . Hence x = y, since V satisfies Extensionality.

M Satisfies ZFA Foundation. Assume that x is a set in M. (Not an atom!)
Then x has the same elements and the same ∈-relation in V , where
Foundation holds. Let y ∈ x be ∈-minimal in V . (y ∈ x and y ∩ x = ∅). Then
y ∈ M (by transitivity), y ∈ x, and y ∩ x = ∅ in M.
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